
Persuasion via Weak Institutions∗

Elliot Lipnowski†

Columbia University

Doron Ravid
University of Chicago

Denis Shishkin
UC San Diego

July 20, 2021

Abstract

A sender commissions a study to persuade a receiver, but influences the report
with some probability. We show that increasing this probability can benefit the
receiver and can lead to a discontinuous drop in the sender’s payoffs. We also
examine a public-persuasion setting, where we observe the report’s susceptibility
to influence restricts the amount of information the sender can provide. To derive
our results, we geometrically characterize the sender’s highest equilibrium payoff,
which is based on the concave envelope of her capped value function.

∗Lipnowski and Ravid acknowledge support from the National Science Foundation (grant SES-
1730168). We would like to thank Roland Bénabou, Ben Brooks, Eddie Dekel, Wouter Dessein, Jon
Eguia, Emir Kamenica, Navin Kartik, Stephen Morris, Pietro Ortoleva, Wolfgang Pesendorfer, Carlo
Prato, Marzena Rostek, Zichang Wang, Richard van Weelden, Leeat Yariv, and various audiences for
useful suggestions. We would also like to thank Chris Baker, Sulagna Dasgupta, Takuma Habu, and
Elena Istomina for excellent research assistance.

†E-mail: e.lipnowski@columbia.edu, dravid@uchicago.edu, dshishkin@ucsd.edu.

1



1 Introduction

Many institutions routinely collect and disseminate information. Although the col-

lected information is instrumental to its consumers, the goal of dissemination is often

to persuade. Persuading one’s audience, however, requires the audience to believe what

one says. In other words, the institution must be credible, meaning it must be capable

of delivering both good and bad news. Delivering bad news might be difficult, however,

because doing so requires the institution to withstand pressure from its superiors. The

current paper studies how an institution’s susceptibility to such pressures influences

its persuasiveness and the quality of the information it provides.

For concreteness, consider a head of state who wants to sway a large multinational

firm to invest as much as possible in her country’s economy. The firm can either make a

large investment, 2, a small investment, 1, or no investment, 0. Whereas the country’s

leader wants to maximize the firm’s expected investment, the firm’s net benefit from

investing depends on the state of the local economy, which can be either good or bad .

When the economy is good , the firm makes a profit of 1 from a large investment, and 3
4

from a small investment. Investing in a bad economy results in losses, yielding the firm

a payoff of −1 and −1
4

from a large and small investment, respectively. Not investing

always generates a payoff of zero to the firm, regardless of the state. Therefore, the

firm will make a large (no) investment whenever it assigns a probability of at least

3/4 to the economy being good (bad). For intermediate beliefs, the firm makes a small

investment. The firm and the policymaker share a prior belief of P(good) = 0.5.

To persuade the firm to invest, the leader commissions a report by the country’s

central bank. By specifying the report’s parameters—its data, methods, assumptions,

focus, and so on—the leader controls the information it conveys to the firm. Formally,

the commissioned report is a signal structure, ξ(·|good) and ξ(·|bad), specifying a dis-

tribution over messages that the firm observes conditional on the state if the report is

conducted as announced. To execute the report as planned, however, the bank must

withstand the leader’s behind-the-scenes pressures; that is, the firm observes a mes-

sage drawn from ξ only if the bank is credible, which occurs with probability χ. With

complementary probability, the bank is influenced, meaning it reveals the state to the

leader and releases a message of the leader’s choice. Once the message is realized, the

firm observes it and chooses how much to invest, without knowing whether the report

is credible.

When the central bank is fully credible, χ = 1, it is committed to the official report.
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As such, the leader can communicate any information she chooses, and so this example

falls within the framework of Kamenica and Gentzkow (2011). Using their results, one

can deduce the policymaker optimally chooses a symmetric binary signal,

ξ∗1(g|good) = 3/4 ξ∗1(g|bad) = 1/4,

ξ∗1(b|good) = 1/4 ξ∗1(b|bad) = 3/4.

Under this signal structure, the firm is willing to invest 2 following a g signal, and 1

following a b signal. Ex ante, the two signals occur with equal probability, leading the

firm to invest 3/2 on average.

If the central bank were weaker, its messages would be less persuasive, because the

firm would no longer take them at face value. To illustrate, suppose χ = 2/3 and that

the leader commissioned the same report as under full credibility. In this case, the

firm could not possibly make a large investment after seeing g: Otherwise, the leader

would always send g when influencing the report, which would make a small investment

strictly better for the firm. Thus, when χ = 2/3, the leader’s full-commitment report

is not sufficiently persuasive to increase the firm’s involvement in the local economy

beyond its no-information investment of 1.

The leader can, however, overcome the firm’s skepticism by asking the bank to

release more information. In fact, when χ = 2/3, commissioning a fully revealing

report that sends g if and only if the economy is good is optimal for the leader. In the

resulting equilibrium, the leader always sends g when influencing the report, whereas

the firm makes a large investment when seeing g and invests nothing otherwise. The

reason the firm finds it optimal to invest 2 upon seeing g is that the bank’s official

report is so informative that a g message results in the firm assigning a probability of

3/4 to good economy despite the leader’s possible interference. Because the firm sees

the g message with probability 2/3, it invests 4/3 on average in the leader’s economy.

Because a weaker central bank results in the leader commissioning a more infor-

mative report, the firm may benefit from a reduction in the bank’s credibility. To

illustrate, observe that when χ = 1, the firm is no better off with the leader’s report

than it was without it: in either case, the firm expects a profit of 1
4
. By contrast,

when χ = 2/3, the firm strictly benefits from the leader’s communications, making an

expected profit of 1
2

from investing 2 after seeing g, and not investing otherwise. On

average, the firm’s profit equals 1
3
. Thus, the leader responds to the central bank’s

weakness by commissioning a report whose informativeness more than compensates
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the firm for the central bank’s increased susceptibility.

To understand examples such as the one above, we study a general model of strategic

communication between a receiver (R, he) and a sender (S, she) who cares only about

R’s action. R’s preferences over his actions depend on an unknown state, θ. To learn

about θ, R relies on information provided by an institution under S’s control. The game

begins with S publicly announcing an official reporting protocol, which is an informative

signal about the state. With probability χ, S’s institution is credible, delivering R a

message drawn according to the originally announced protocol. With complementary

probability, the report is influenced: S learns the state and chooses what message to

send to R. Seeing the message (but not its origin), R takes an action. Thus, χ represents

the credibility, or strength, of S’s institution; that is, the institution’s ability to resist

interference by its superiors.

At the extremes, our framework specializes to two prominent models of information

transmission. When χ = 1, S never gets to influence the report, so our setting reduces

to one in which S publicly commits to her communication protocol at the beginning of

the game. In other words, under full credibility, our model is equivalent to Bayesian

persuasion (Kamenica and Gentzkow, 2011). When χ = 0, R knows S is choosing the

report’s message ex post. Because messages are costless, S’s communication is cheap

talk (Crawford and Sobel, 1982; Green and Stokey, 2007), meaning our no-credibility

case corresponds to a cheap talk game with state-independent preferences (Chakraborty

and Harbaugh, 2010; Lipnowski and Ravid, 2020).

The corner cases of our model lend themselves to geometric analysis, commonly

used in the information-design literature (e.g., Kamenica and Gentzkow, 2011; Alonso

and Câmara, 2016; Ely, 2017). Such an analysis characterizes S’s utility in her favorite

equilibrium by looking at her value function, which specifies the highest value S can

obtain from R responding optimally to a given posterior belief. As Kamenica and

Gentzkow (2011) showed, concavifying this function gives S’s largest equilibrium payoff

in the Bayesian persuasion model. More recently, Lipnowski and Ravid (2020) observed

that, as long as S only cares about R’s actions, quasiconcavifying S’s value function—

that is, taking the function’s quasiconcave envelope—delivers her highest equilibrium

payoff under cheap talk.

Our Theorem 1 uses the above-mentioned geometric approach to characterize S’s

maximal equilibrium value in the intermediate credibility case, χ ∈ (0, 1). To do so, the

theorem partitions S’s equilibrium messages into two sets: messages S willingly sends

when influencing the report (e.g., g in the above example), and messages communicated
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only by the official report. We show that whereas one can characterize S’s payoffs from

influenced reporting via quasiconcavification as in Lipnowski and Ravid (2020), one

cannot simply use concavification to obtain S’s utility from messages sent exclusively

by official reporting. The reason is that, in equilibrium, S’s utility from these messages

cannot surpass the payoff she obtains under compromised reporting, because if it did,

S would have a profitable deviation. To account for this incentive constraint, one must

cap S’s value function before concavifying it.

Using Theorem 1, we explore how the use of weaker institutions affects persuasion.

Proposition 1 identifies situations in which R does better with a less credible S. In

particular, the proposition shows such productive mistrust can occur when S wants

to reveal intermediate information under full credibility. In such circumstances, a less

credible S may choose to commission a report that releases more news that is bad for

her, so that R believes messages that are good for S. We see this case in the central-

bank example above: when χ = 1, the leader never fully reveals any state, whereas

under χ = 2/3, the leader must occasionally reveal that the economy is bad in order

to ensure the firm invests 2 when seeing g.

Our next result, Proposition 2, shows that small decreases in credibility lead to

large drops in the sender’s value for all interesting finite instances of our model. More

precisely, we show such a collapse occurs at some full-support prior and some credibility

level if and only if S can benefit from persuasion. Such a collapse is present in the above

example: Whenever χ < 2/3, the leader cannot induce the firm to invest 2 even when

she chooses to commission a fully revealing report. Thus, the best the leader can do

when χ < 2/3 is to get an investment of 1 for sure by communicating no information—a

drop of 1/3 from the 4/3 average investment the leader obtains when χ is exactly 2/3.

One can also construct examples in which S’s value collapses at full credibility.

For example, suppose the firm can make a gigantic investment of 10 in the leader’s

economy but finds doing so optimal if and only if it is certain the economy is good .

Under full credibility, the leader can obtain a payoff of 5 by revealing the state, and

have the firm invest nothing when the economy is bad and 10 when the economy is

good . By contrast, when χ < 1, none of the leader’s messages can get the firm to

make a gigantic investment: if it could, the leader would always send such a message

when influencing the report in a bad economy; thus, that message could not possibly

convince the firm that the economy is good for sure. As such, when χ < 1, the leader

cannot hope to obtain an investment larger than 2. Thus, even a tiny imperfection in

the central bank’s credibility causes a significant drop in the leader’s payoff.
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One may suspect the non-robustness of the full-credibility solution in the above

modified example is rather special. Our third proposition confirms this suspicion. In

particular, it shows S’s value can collapse at full credibility if and only if R does not

give S the benefit of the doubt; that is, to obtain her best feasible payoff, S must

persuade R that some state is impossible. This property is clearly satisfied by the

above modified example: The firm is willing to make a gigantic investment only if it

assigns a zero probability to the economy being bad . Moreover, this property is non-

generic: for a fixed finite setting, the set of environments where R fails to give S the

benefit of the doubt has measure zero. Thus, although S’s value often collapses due to

small decreases in credibility, such collapses rarely occur at full credibility.

Section 5 abandons our general analysis in favor of a specific instance of public

persuasion. In this specification, S uses her weak institution to release a public report

whose purpose is to sway a population of receivers to take a favorable binary action.

For example, S may be a seller who markets her product by sending it to reviewers or a

leader using state-owned media to vie for the support of her populace. Each receiver’s

utility from taking S’s favorite action is additively separable in the unknown state and

his idiosyncratic type, which follows a well-behaved single-peaked distribution. We

show (Claim 1) it is S-optimal for the official report to take an upper-censorship form,

characterized by a threshold below which states are fully separated. States above this

threshold are pooled into a single message, which S always sends when influencing the

report. The information revealed turns out to be identical to the experiment that S

uses under full commitment with an upper bound on the informativeness of her signal.

Thus, in this setting, partial credibility has the same impact as bounding the amount

of information that S can release in equilibrium.

We also consider several extensions. For example, we show that letting S know

whether her announcement is credible before choosing the official report does not al-

ter the S-favorite equilibrium: every S-favorite equilibrium when S does not know her

credibility type is outcome-equivalent to an S-favorite equilibrium when her credibil-

ity type is her private information, and vice-versa. We also show the results of the

baseline model readily extend to the case in which credibility is correlated with the

state. This extension allows us to assess the relative value of credibility in a different

state in specific examples. We illustrate by showing that in our public persuasion ex-

ample from section 5, S especially prefers her institution to be resistant to pressure

in bad states. Specifically, concentrating the credibility of S’s institution in low states

uniformly increases S’s payoffs across all type distributions.
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We conclude by further enriching our model to allow S to design her institution at

a cost. More precisely, we let S publicly choose the probability with which reporting

is credible in each state. S’s credibility choice is made in ignorance of the state and

comes at a cost that is a continuous and increasing function of the institution’s average

credibility. We explain how to adjust our analysis to this setting, and observe that R

may benefit from an increase in S’s costs, echoing the productive-mistrust phenomenon

of the fixed-credibility model. By contrast, an infinitesimal increase in S’s costs never

leads to a sizable decrease in S’s value, suggesting collapses of trust are a byproduct of

rigid institutional structures.

Related Literature. This paper contributes to the literature on strategic informa-

tion transmission. To place our work, consider two extreme benchmarks: full credi-

bility and no credibility. Our full-credibility case is the model used in the Bayesian

persuasion literature (Aumann and Maschler, 1995; Kamenica and Gentzkow, 2011;

Kamenica, 2019),1 which studies sender-receiver games in which a sender commits to

an information-transmission strategy. The no-credibility specialization of our model

reduces to cheap talk (Crawford and Sobel, 1982; Green and Stokey, 2007). In partic-

ular, we build on Lipnowski and Ravid (2020), who use the belief-based approach to

study cheap talk under state-independent sender preferences.

Two recent papers (Min, 2020; Fréchette, Lizzeri, and Perego, 2020) study closely

related models. Fréchette, Lizzeri, and Perego (2020) test experimentally the connec-

tion between the informativeness of the sender’s communication and her credibility in

the binary-state, binary-action version of our model. Min (2020) looks at a generaliza-

tion of our model in which the sender’s preferences can be state dependent. He shows

the sender weakly benefits from a higher commitment probability. Applying Blume,

Board, and Kawamura’s (2007) results on noisy communication, Min (2020) also shows

allowing the sender to commit with positive, rather than zero, probability strictly helps

both players in Crawford and Sobel’s (1982) uniform-quadratic example.

Other thematically related work studies games of information transmission while

varying the (exogenous or endogenous) limits to communication. Some such work fo-

cuses on games of direct communication, showing how some manner of commitment

power can be sustained (for either a sender or a receiver) via lying costs (e.g., Kar-

tik, 2009; Guo and Shmaya, 2021; Nguyen and Tan, 2021), repeated interactions (e.g.,

Best and Quigley, 2020; Mathevet, Pearce, and Stacchetti, 2019), verifiable information

1See also Aumann and Maschler (1966).
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(e.g., Glazer and Rubinstein, 2006; Sher, 2011; Hart, Kremer, and Perry, 2017; Ben-

Porath, Dekel, and Lipman, 2019), informational control (e.g., Ivanov, 2010; Luo and

Rozenas, 2018), or mediation (e.g., Goltsman et al., 2009; Salamanca, 2021). Other

work considers models in which a sender chooses an experiment ex ante, asking how

persuasion can be shaped by exogenous experiment constraints (e.g., Ichihashi, 2019;

Perez-Richet and Skreta, 2021) or by signaling motives (e.g., Perez-Richet, 2014; Hed-

lund, 2017; Alonso and Câmara, 2018).

More broadly, weak institutions often serve as a justification for examining mecha-

nism design under limited commitment (e.g., Bester and Strausz, 2001; Skreta, 2006).

We complement this literature by relaxing a principal’s commitment power in the con-

trol of information rather than incentives.

2 A Weak Institution

We analyze a game with two players: a sender (S, she) and a receiver (R, he). Whereas

both players’ payoffs depend on R’s action, a ∈ A, R’s payoff also depends on an

unknown state, θ ∈ Θ. Thus, S and R have objectives uS : A→ R and uR : A×Θ→ R,

respectively, and each aims to maximize expected payoffs.

The game begins with S commissioning a report, ξ : Θ → ∆M , to be delivered

by a research institution. The state then realizes, and R receives a message m ∈ M
(without observing θ). Given any θ, S is credible with probability χ, meaning m is

drawn according to the official reporting protocol, ξ(·|θ). With probability 1− χ, S is

not credible, in which case S decides which message to send after privately observing θ.

Only S learns her credibility type, and she learns it only after announcing the official

reporting protocol.

We impose some technical restrictions on our model.2 Both A and Θ are compact

metrizable spaces with at least two elements, and the objectives uR and uS are con-

tinuous. Occasionally, we discuss the finite model, which is the special case in which

both Θ and A are finite. The state, θ, follows some prior distribution µ0 ∈ ∆Θ, which

is known to both players. Finally, we assume M is an uncountable compact metrizable

space.3

2For a compact metrizable space, Y , we denote by ∆Y the set of all Borel probability measures
over Y , endowed with the weak* topology.

3We impose the richness condition to isolate the restrictions on communication that arise from
credibility concerns alone. Our characterization of sender-optimal equilibrium values (Theorem 1) and
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We now define an equilibrium, which consists of four objects: S’s official reporting

protocol, ξ : Θ → ∆M , executed whenever S is credible; the strategy that S employs

when not committed, that is, S’s influencing strategy, σ : Θ → ∆M ; R’s strategy,

α : M → ∆A; and R’s belief map, π : M → ∆Θ, assigning a posterior belief to each

message. A χ-equilibrium is an official reporting policy announced by S, ξ, together

with a perfect Bayesian equilibrium of the subgame following S’s announcement. For-

mally, a χ-equilibrium is a tuple (ξ, σ, α, π) of measurable maps such that it is con-

sistent with Bayesian updating, and both R and S behave optimally; that is,

1. π : M → ∆Θ is derived from µ0 via Bayes’ rule, given message policy

χξ + (1− χ)σ : Θ→ ∆M,

whenever possible;

2. α(m) is supported on argmaxa∈A
∫

Θ
uR (a, ·) dπ(·|m) for all m ∈M ;

3. σ(θ) is supported on M∗
α := argmaxm∈M

∫
A
uS(·) dα(·|m) for all θ ∈ Θ.

We view S as a principal capable of steering R toward her favorite χ-equilibria. Because

such equilibria automatically satisfy S’s incentive constraints on the choice of ξ, we omit

said constraints for the sake of brevity.

Discussing what happens in our game as one varies the prior and credibility of S’s

institution is useful. Thus, given a belief µ ∈ ∆Θ and χ ∈ [0, 1], let G(χ, µ) denote

the version of our game in which the prior is µ and S’s credibility is χ. An equilibrium

of G(χ, µ) is a χ-equilibrium when µ is the state’s distribution.

We analyze our model via the belief-based approach, commonly used in the liter-

ature on strategic communication. Specifically, we use the ex-ante distribution over

R’s posterior beliefs, p ∈ ∆∆Θ, as a substitute for S’s official reporting protocol, S’s

strategy, and the equilibrium belief system, π. Clearly, every ξ, σ, and π generate some

such distribution over R’s posterior belief. By Bayes’ rule, this posterior distribution

averages to the prior, µ0. That is, p ∈ ∆∆Θ satisfies
∫
µ dp (µ) = µ0. We refer to any

p that averages back to the prior as an information policy. Thus, only information

policies can originate from some ξ, σ, and π. The fundamental result underlying the

belief-based approach is that every information policy can be generated by some σ and

the propositions of section 4 hold if |M | ≥ |A|, or if Θ is finite and |M | ≥ 2|Θ| − 1; see Proposition 4.
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π.4 Let R(µ0) denote the set of all information policies when the prior is µ0.

The belief-based approach allows us to focus on the game’s outcomes. Formally, an

outcome is a triplet, (p, so, si) ∈ (∆∆Θ)×R×R, representing R’s posterior distribu-

tion, p, S’s payoff when credible, so, and S’s payoff when influencing the report, si. An

outcome is a χ-equilibrium outcome if it corresponds to a χ-equilibrium.5 Observe

that knowing a χ-equilibrium’s outcome is sufficient for recovering each player’s ex-

pected payoff: given an outcome (p, so, si), S earns a payoff of χso + (1−χ)si, whereas

R’s expected utility is
∫

maxa∈A
∫
uR(a, ·) dµ dp(µ).

3 Persuasion with Partial Credibility

In this section, we characterize S’s maximal χ-equilibrium payoff. We begin by review-

ing existing results that cover the extreme versions of our model. We then proceed

to use these results to prove our main theorem, which covers the case in which χ is

intermediate.

3.1 The Extreme Cases

The existing results that characterize our model’s edge cases are geometric and rely on

S’s value function. To describe this function, define S’s value correspondence,6

V : ∆Θ⇒ R

µ 7→ co uS

(
argmax
a∈A

∫
uR(a, ·) dµ

)
.

In words, V (µ) is the set of payoffs that S can obtain when R behaves optimally given

posterior belief µ. S’s value function,

v(µ) := maxV (µ),

identifies S’s highest continuation payoff from inducing this posterior.7

4For example, see Aumann and Maschler (1995), Benôıt and Dubra (2011), or Kamenica and
Gentzkow (2011).

5Definition 2 in the Appendix spells out the definition of a χ-equilibrium outcome.
6The notation ”co” refers to the convex hull.
7Note (appealing to Berge’s theorem) V is a Kakutani correspondence, that is, a nonempty-

compact-convex-valued, upper hemicontinuous correspondence. Therefore, v is a well-defined, upper
semicontinuous function.
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When χ = 1, S’s official announcement is binding, and so the game reduces to

the Bayesian persuasion model of Kamenica and Gentzkow (2011). In this case, S is

hampered by two constraints: Bayesian updating and R’s incentives. As explained in

section 2, R being Bayesian is tantamount to restricting R’s belief distribution to the

set of information policies, p ∈ R(µ0). R’s incentives mean S’s expected utility from

inducing a belief µ must come from V (µ). Maximizing S’s payoff belief by belief, and

across all information policies gives her payoff under full credibility,

max
p∈R(µ0)

∫
v(·) dp.

It is well-known (e.g. Aumann and Maschler, 1966; Kamenica and Gentzkow, 2011)

that the function mapping the prior to this optimal value admits a geometric charac-

terization: It is the pointwise-lowest concave and upper semicontinuous function that

is everywhere above v. This function, which we denote by v̂, is known as v’s concave

envelope.

When χ = 0, R knows S is choosing m after observing the state. Being costless,

these messages are cheap talk (Crawford and Sobel, 1982; Green and Stokey, 2007)

and thus need to satisfy S’s incentive constraints. Our assumption that S’s preferences

are state independent simplifies these constraints considerably: S must be indifferent

between all on-path messages. The reason is that if S’s payoffs across two distinct

messages differ, S never sends the lower-payoff message. Combining this indifference

condition with the restrictions imposed by Bayesian updating and R-optimality yields

the following characterization of the set of equilibrium outcomes (see Aumann and Hart,

2003; Lipnowski and Ravid, 2020): in addition to p being an information policy, p ∈
R(µ0), S’s payoff must be incentive compatible for R for all on-path posterior beliefs;

that is, si ∈ V (µ) p-almost surely. Lipnowski and Ravid (2020) show the highest payoff

S can attain subject to these constraints is given by v’s quasiconcave envelope—

that is, the pointwise lowest quasiconcave function that is everywhere above v—which

we denote by v̄.

Panels (a) and (b) in Figure 3 (see subsection 3.2) illustrate v’s quasiconcave and

concave envelopes, respectively. These envelopes describe S’s ability to benefit from

communication by connecting points on the graph of S’s value correspondence. With

full credibility, S can connect such points using any affine segment. When χ = 0, S’s

incentive constraints mean her payoff coordinate must remain constant; that is, S can

use only flat segments.
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We now demonstrate the solution of our model’s extreme cases in two binary-state

specifications: the introduction’s central bank example and a news-outlet example.

Example 1. Let us reformulate the introduction’s central-bank example in more suc-

cinct notation. The economy’s state can be either 1 ( good) or 0 ( bad). Given the

binary state, we abuse notation and identify each belief µ ∈ ∆Θ with the probability

it assigns to state 1. The international firm (R) can make a large investment, a = 2,

a small investment a = 1, or no investment, a = 0. The country’s leader (S) wants

to maximize R’s expected investment, regardless of the state, uS(a) = a, where R’s

returns from investing depends on the state via

uR(a, θ) = θa− 0.25a2.

It is straightforward to verify this formulation leads to the same payoffs, and therefore

the same R best-response correspondence as presented in the introduction. Thus, S’s

value correspondence and value function are given by

V (µ) =



{0} if µ < 1/4,

[0, 1] if µ = 1/4,

{1} if µ ∈ (1/4, 3/4),

[1, 2] if µ = 3/4,

{2} if µ > 3/4,

v(µ) =


0 if µ < 1/4,

1 if µ ∈ [1/4, 3/4),

2 if µ ≥ 3/4.

(1)

Figure 1a graphs v as a function of the probability R’s belief assigns to state 1.

Observe v(µ) increases with µ.

Let us begin by solving the no-credibility case. When χ = 0, S’s maximal equilib-

rium value is given by the quasiconcave envelope of v evaluated at the prior, v̄(µ0).

Observe, however, that v is itself quasiconcave by virtue of being monotone, and so

v̄ = v. It follows that babbling is the best S can achieve via cheap talk.

Now suppose now S has full credibility. In this case, one can calculate S’s highest

equilibrium payoff via v’s concave envelope,

v̂(µ) =


4µ if µ ≤ 1/4,

1 + 2(µ− 1/4) if µ ∈ [1/4, 3/4]

2 if µ ≥ 3/4.

(2)
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(a) v

µ
10

(b) v̂

µ
10

Figure 1: The value function and its concave envelope in Example 1.

For an illustration, see Figure 1. Evaluating this envelope at the prior, we get S’s

highest equilibrium payoff when χ = 1 is 3/2. As explained in the introduction, S can

obtain this utility by commissioning a symmetric binary report that generates a signal

realization that matches the state with probability 3/4.

Example 2. Suppose the state is binary, Θ = {0, 1}, and the prior, µ0, assigns state

1 a probability 1
3
. As in the previous example, identify each belief with the probability

it assigns to θ = 1. R chooses an action in A = [0, 1] to minimize quadratic loss,

uR(a, θ) = −(a− θ)2.

S’s preferences are given by

uS(a) = (a− 1/3)2 .

Observe R’s unique best reply is to set his action equal to the expectation of the state,

a∗(µ) = µ. Thus, S wants R’s action to differ as much as possible from 1/3, which is

R’s optimal action under the prior. One can interpret S as a news outlet whose goal is

to influence R’s beliefs as much as possible.

We now review how one would find S’s favorite equilibrium in this example when

χ is extreme. The first step is to find S’s value function, which is given by

v(µ) = uS(a∗(µ)) = (µ− 1/3)2.

Figure 2 depicts v along with its concave (v̂) and quasiconcave (v̄) envelopes as func-

tions of the probability µ R’s belief assigns to state 1.
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(a) v

µ
10

(b) v̂

µ
10

(c) v̄

µ
10

Figure 2: The value function and its quasiconcave and concave envelopes in Example 2.

Under χ = 1, S’s favorite equilibrium value is given by the concave envelope of

v, evaluated at the prior. Since v is convex, its concave envelope is given by the line

connecting its value at the extreme beliefs, δ0 and δ1,

v̂(µ) = 1/9 + (1/3)µ.

To attain this payoff, S uses a fully revealing official report. Because µ0 = 1/3 under

the prior, S’s full credibility payoff is 2/9.

Without any credibility, S’s favorite equilibrium payoff is given by the quasiconcave

envelope of v,

v̄(µ) = max{1/9, v(µ)} =

1/9 if µ ≤ 2/3,

(µ− 1/3)2 otherwise.

S can attain the value v̄(µ0) = 1/9 in a 0-equilibrium with only two on-path messages,

m0 and m1, where S sends m1 with probability 1 when the state is 1, and with prob-

ability 1/4 when the state is 0. Conditional on observing m0, R knows the state is 0,

and so chooses a = 0. If he observes m1, R assigns a probability of 2/3 to the state

being 1, and so chooses a = 2/3. Hence, S’s expected payoff is 1/9, regardless of which

message she sends.

3.2 The Intermediate Credibility Case

This section presents Theorem 1, which geometrically characterizes S’s optimal χ-

equilibrium value for our general model. We begin by defining a class of χ-equilibria

that are sufficient for obtaining all of the game’s χ-equilibrium outcomes. We then

14



explain how one can use this class of χ-equilibria along with existing results on strate-

gic communication to obtain an upper bound on S’s maximal χ-equilibrium payoff.

Theorem 1 shows this bound is attainable, and thus delivers S’s favorite χ-equilibrium

value.

In the Appendix, we show every χ-equilibrium outcome is attainable via a restricted

class of equilibria, termed χ-nonical equilibria. A χ-nonical equilibrium is a χ-

equilibrium, (ξ, σ, α, π), such that8

σ(·|θ) = ξ(·|θ,M∗
α); (3)

that is, given every state, S’s strategy when influencing the report equals the official ex-

periment’s message distribution conditional on sending a message from M∗
α. Informally,

χ-nonical equilibria are those in which an influenced institution censors any message

S dislikes, repeatedly redrawing messages from the official report until it obtains a

message that S approves.

Note the equilibria discussed in the introduction’s example are all χ-nonical. To

see why, observe all the equilibria admit g as S’s unique payoff-maximizing message;

that is, M∗
α = {g}. Because influenced reporting only sends messages in M∗

α, it follows

that ξ(g|θ,M∗
α) = σ(g|θ) = 1.

A useful property of χ-nonical equilibria is that they remain equilibria when S

has no credibility—as long as the prior is appropriately shifted. More specifically, if

(ξ, σ, α, π) is a χ-nonical equilibrium of G(χ, µ0), it is also an equilibrium of G(0, γ),

where γ := E[π|m ∈ M∗
α] is the posterior R would have if he learned m is in M∗

α

but did not observe m itself. To see why, observe first that because (ξ, σ, α, π) is an

equilibrium of G(χ, µ0), S’s influencing strategy σ(θ) is supported on M∗
α for all θ,

and thus satisfies S’s incentive constraints in G(0, γ). Similarly, because R’s posterior

belief, π, and resulting action distribution, α, are taken from an equilibrium, α(m)

must maximize R’s utility given the posterior π(m) for every message m. All that

remains is to verify that (ξ, σ, α, π) is consistent with Bayesian updating when played

in G(0, γ), a fact that follows from (ξ, σ, α, π) being χ-nonical. 9

8Formally, given θ ∈ Θ, define ξ(M̂ |θ,M∗α) := ξ(M̂ ∩M∗α|θ)/ξ(M∗α|θ) for every Borel M̂ ⊆ M if
ξ(M∗α|θ) > 0, and define ξ(·|θ,M∗α) := σ(·|θ) otherwise.

9For intuition, suppose the model is finite and that M∗α is finite as well. In this case, every on-path
m ∈M∗α and every θ ∈ Θ satisfy

π(θ|m) =
µ0(θ)[χξ(M∗α|θ) + 1− χ]σ(m|θ)∑

θ′∈Θ µ0(θ′)[χξ(M∗α|θ′) + 1− χ]σ(m|θ′)
=

γ(θ)σ(m|θ)∑
θ′ γ(θ′)σ(m|θ′)

,
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We now proceed to obtain an upper bound on S’s value from an arbitrary χ-nonical

equilibrium, (ξ, π, α, σ). Letting k := P{m /∈ M∗
α} be the probability that R observes

an S-suboptimal message, this equilibrium gives S a utility of

E[uS] = kE[uS|m /∈M∗
α] + (1− k)E[uS|m ∈M∗

α]. (4)

We find that because (ξ, π, α, σ) is χ-nonical, one can use quasiconcavification to bound

E[uS|m ∈ M∗
α] from above. To do so, notice that all messages in M∗

α generate the

same payoff for S. Moreover, this payoff equals S’s utility when playing (ξ, π, α, σ) in

G(0, γ), because then S’s message comes from σ, which is supported on M∗
α. Therefore,

E[uS|m ∈ M∗
α] is a no-credibility equilibrium value under prior γ, and thus must be

smaller than the largest such payoff, v̄(γ).

Next, we explain how to use concavification to bound E[uS|m /∈ M∗
α]. Toward this

goal, fix some m outside M∗
α, and let µ := π(m) be its induced posterior belief. Observe

that S’s payoff from sending m must satisfy two constraints. First, R must be acting

optimally given his posterior, meaning S’s payoff must lie below v(µ). And second, S’s

payoff must be below the utility she gets from sending a message in M∗
α; otherwise,

S would prefer to send m rather than M∗
α when influencing the report. Because S’s

utility from sending messages in M∗
α is lower than v̄(γ), it follows that S’s payoff from

m must also be below v̄(γ). Thus, S’s payoff from m must be lower than

v∧γ(µ) := v̄(γ) ∧ v(µ).

It follows that E[uS|m /∈ M∗
α] is smaller than the utility that S would obtain in a full-

credibility game in which her value function is v∧γ and R’s belief is β := E[π|m /∈M∗
α];

that is,10

E[uS|m /∈M∗
α] ≤ v̂∧γ(β),

where v̂∧γ is v∧γ’s concave envelope.

Observe that v̂∧γ expresses only some of the restrictions imposed by partial credibil-

ity on S’s ability to derive value from her official report. For an explanation, note v̂∧γ

where the first equality follows from (ξ, π, α, σ) being χ-nonical, and the second equality from dividing
both the numerator and the denominator by the probability R observes a message from M∗α when
(ξ, π, α, σ) is played in G(χ, µ0).

10One can also verify this inequality directly: E[uS(m)|m /∈ M∗α] ≤ E[v∧γ ◦ π(m)|m /∈ M∗α] ≤
E[v̂∧γ ◦ π(m)|m /∈ M∗α] ≤ v̂∧γ(β), where the first and second inequalities following from uS(m) ≤
v∧γ ◦ π(m) ≤ v̂∧γ ◦ π(m), and the last inequality following from Jensen.
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is obtained by first capping S’s value function at v̄(γ) and then concavifying (see Fig-

ure 3). Prima facie, each operation seems reasonable: the cap prevents S from sending

messages that would lead to profitable deviations under influenced reporting, whereas

concavification expresses the fact that S is committed to the announced experiment

when reporting is credible. Still, each operation involves a relaxation of some incentive

constraint. First, for an arbitrary χ-equilibrium, S’s payoff when influencing the report

may be lower than v̄(γ), and so using v̄(γ) as a cap may not eliminate all of S’s prof-

itable deviations. And second, whereas concavification assumes all posteriors beliefs

are feasible, inducing posteriors at which the cap binds may be impossible, because at

such posteriors, R may be unwilling to give S a payoff as low as v̄(γ). As we discuss

later, showing neither of these relaxations matters at S’s favorite χ-equilibrium lies at

the crux of Theorem 1’s proof.

(a) v̄ (b) v̂ (c) v̂∧γ

Figure 3: Quasiconcave envelope, concave envelope, and concave envelope with a cap.

So far, we have argued S’s value from a fixed χ-nonical equilibrium is lower than

v∗(β, γ, k) := kv̂∧γ(β) + (1− k)v̄(γ).

Of course, the above bound holds only for the equilibrium that induced (β, γ, k). To

attain an upper bound across all equilibria, we maximize the above expression over all

(β, γ, k) satisfying two restrictions necessary for a χ-nonical equilibrium. For the first

restriction, observe that telling R whether m is in M∗
α (without telling her m itself)

results in her having a posterior of β with probability k, and a posterior of γ with

probability 1− k. Bayesian updating therefore requires

kβ + (1− k)γ = µ0; (R-BP)

17



that is, R’s average posterior must equal his prior. For the second restriction, take

any event (i.e., Borel set) Θ̂ ⊆ Θ, and observe the probability this event occurs and

R sees a message from M∗
α is (1 − k)γ(Θ̂). Moreover, this probability should be at

least as high as the probability that Θ̂ occurs and reporting is non-credible—that is,

(1−χ)µ0(Θ̂)—because influenced reporting always sends a message from M∗
α. In other

words,

(1− k)γ ≥ (1− χ)µ0. (χ-BP)

Thus, we have obtained the following upper bound on S’s maximal χ-equilibrium value:

v∗χ(µ0) := max
β,γ∈∆Θ, k∈[0,1]

v∗(β, γ, k) (5)

s.t. (R-BP) and (χ-BP). (6)

Applying the existing literature’s results, one can easily show the above bound is

attained when χ is extreme. For an explanation, suppose first S has no credibility,

meaning χ = 0. In this case, the only way to satisfy (χ-BP) is to set k = 0 and γ = µ0.

As such, v∗0(µ0) = v̄(µ0), which is attained by S’s favorite 0-equilibrium. Suppose now

S has full credibility; that is, χ = 1. Because both v̄ and v̂∧γ are bounded from above

by v̂ (see Figure 3), it follows that every β, γ, and k that satisfy (R-BP) must also

have

kv̂∧γ(β) + (1− k)v̄(γ) ≤ kv̂(β) + (1− k)v̂(γ) ≤ v̂(µ0),

where the last inequality follows from concavity of v̂. Because v̂(µ0) is attainable in a

1-equilibrium, we therefore have v̂(µ0) ≤ v∗1(µ0) ≤ v̂(µ0); that is, S obtains v∗1(µ0) in

her favorite 1-equilibrium.

Our main theorem shows the above bound is also tight when χ is intermediate.

Theorem 1. A χ-equilibrium exists in which S’s value is v∗χ(µ0). Moreover, any such

χ-equilibrium is S-optimal.

When v∗χ(µ0) = v̄(µ0), one can attain the program’s value using a cheap-talk equilib-

rium. Thus, suppose v∗χ(µ0) > v̄(µ0). In this case, the theorem’s proof uses the model’s

extreme cases to transform any (β, γ, k) that solves (5) into a χ-nonical equilibrium.

For a sketch, start by taking an S-favorite equilibrium of G(0, γ)—say, (ξγ, σγ, αγ, πγ)—

that generates S a payoff of v̄(γ). Next, find an equilibrium (ξβ, σβ, αβ, πβ) of the game

G(1, β) that gives S a utility of v̂∧γ(β), and in which all of S’s messages yield a value

smaller than v̄(γ) (we defer explaining how to obtain such an equilibrium until the
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next paragraph). Standard measure-theoretic arguments ensure we can select these

two equilibria in a way that partitions the set of on-path messages into two: the set

Mγ of messages sent by σγ and the set Mβ of messages sent by ξβ. One can then proceed

by pasting these two equilibria into a single χ-nonical equilibrium in which S’s value is

v∗χ(µ0). When Mγ, Mβ, and Θ are all finite, the construction goes as follows. For any

message m ∈ Mβ ∪Mγ, define R’s strategy and beliefs according to the equilibrium

that generates m on path; that is, (α∗(m), π∗(m)) = (αγ(m), πγ(m)) for m ∈ Mγ, and

(α∗(m), π∗(m)) = (αβ(m), πβ(m)) for m ∈ Mβ. S’s influencing strategy is defined via

σ∗ := σγ, whereas the official report is defined in two parts. First, for m in Mγ take

ξ∗(m|θ) =

[
(1− k)γ(θ)

(1− χ)µ0(θ)
− 1

](
1− χ
χ

)
σγ(m|θ),

which is a well-defined probability due to (R-BP) and (χ-BP). And second, set the

probability the official report sends a message m in Mβ to be

ξ∗(m|θ) =

[
kβ(θ)

χµ0(θ)

]
ξβ(m|θ).

Let us now verify (ξ∗, σ∗, α∗, π∗) is an equilibrium of the original game, G(χ, µ0). Ob-

serve all on-path messages come from either Mβ or Mγ, and that R’s beliefs and (mixed)

action following any such message come from an equilibrium with a prior of β and γ,

respectively, and so R’s strategy must be optimal given her beliefs. Optimality of S’s

behaviors follows from two facts. First, all messages in Mγ lead αγ to take an action

yielding S a payoff of v̄(γ). And, second, all messages in Mβ result in αβ giving S a

lower payoff. It follows the same is true for α∗, and so S has no incentive to deviate

when influencing the report. It remains to check whether R’s beliefs obey Bayes’ rule.

To do so, observe our construction guarantees the probability the state is θ and R

observes the message m is (1 − k)γ(θ)σγ(m|θ) when m is in Mγ, and kβ(θ)ξβ(m|θ)
when m is in Mβ. Therefore, Bayes’ rule dictates R must assign θ a probability of

kβ(θ)ξβ(m|θ)∑
θ′∈Θ kβ(θ′)ξβ(m|θ′)

= πβ(θ|m) = π∗(θ|m),

after seeing a message m ∈Mβ, and

(1− k)σγ(m|θ)γ(θ)∑
θ′∈Θ(1− k)σγ(m|θ′)γ(θ′)

= πγ(θ|m) = π∗(θ|m)
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after m ∈Mγ. In other words, (ξ∗, σ∗, α∗, π∗) is consistent with Bayesian updating.

We now return to finding an appropriate (ξβ, σβ, αβ, πβ). Our task is to define this

profile so that it is an equilibrium of G(1, β) satisfying two criteria: First, it gives S

a payoff of v̂∧γ(β). And second, all of S’s messages yield a payoff weakly under v̄(γ).

Toward this goal, take G̃(1, β) to be the modified version of the game in which S’s

utility from high-payoff actions is reduced to v̄(γ); that is, replace uS with

uS∧γ(a) := min{uS(a), v̄(γ))}.

In this modified game, S’s value function equals v∧γ, and so v̂∧γ(β) is S’s highest

equilibrium value in G̃(1, β). Moreover, S’s payoff in this game differs from her payoff

in the original game only when R takes an action a for which uS(a) > v̄(γ). Therefore,

to obtain the desired strategy profile, it is enough to find an S-favorite equilibrium of

G̃(1, β) with the property that all on-path messages deliver S a payoff below v̄(γ) in the

original game, G(1, β). We find one can obtain such a profile by taking (ξβ, σβ, αβ, πβ)

to be an S-favorite equilibrium of G̃(1, β) in which R chooses (mixed) actions that

yield a uS of v̄(γ) or below when indifferent.11 The intuition is similar to Kamenica

and Gentzkow’s (2011) judge example in that it uses the following property of the

full-commitment solution: the concave envelope must be affine on the line connecting

β with πβ(m) for almost every m. To use this property, notice (ξβ, σβ, αβ, πβ) results

in uS being strictly above v̄(γ) after a message m only if R is unwilling to take an

action for which uS is below v̄(γ) when holding a belief of µ := πβ(m). A simple limit

argument then implies no such action can be optimal for R at any nearby belief as

well. Therefore, v̂∧γ(µ
′) = v̂∧γ(µ) = v̄(γ) > v̂∧γ(β) must hold for any belief µ′ close

to µ that lies on the line between µ and β. But this inequality can hold only if v̂∧γ

fails to be affine on this line, a contradiction. It follows that (ξβ, σβ, αβ, πβ) satisfies

the desiderata.

We now demonstrate the theorem by applying it to the simple two-state examples

from before.

Example 1 (continued). Consider again the reformulation of the introduction’s exam-

ple. Thus, Θ = {0, 1}, A = {0, 1, 2}, uS(a) = a, and uR(a, θ) = θa− 0.25a2. Recall we

identify each belief with the probability it assigns to θ = 1. S’s value function is given

by equation (1), whereas (2) gives its concave envelope. Because the value function is

11Observe such a selection is consistent with S-favored tie-breaking in the modified game, because
in that game, S cannot obtain a payoff higher than v̄(γ).
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monotone, it is quasiconcave and so equal to its quasiconcave envelope.

By Theorem 1, we can find S’s highest χ-equilibrium payoff by solving the program

(5). To obtain this solution, we first make a few useful observations regarding the

program’s constraints. Examining (R-BP) for this binary-state setting reveals it is

equivalent to two conditions: First, either β ≤ µ0 ≤ γ or γ ≤ µ0 ≤ β. And second, if

β 6= γ, then k = kβ,γ, where

kβ,γ =
γ − µ0

γ − β
. (7)

Moreover, because the state space is finite (indeed, binary), the measure-valued con-

straint (χ-BP) can be evaluated state by state. Specifically, it is enough to check

(1− k)γ ≥ (1− χ)µ0 (8)

(1− k)(1− γ) ≥ (1− χ)(1− µ0). (9)

Let us make two observations assuming β ≤ µ0 < γ (which turns out to be the relevant

case for this example). First, in this range, the weight kβ,γ is increasing in β and γ.

Second, because µ0 = 1− µ0 = 1/2, the right-hand sides of (8) and (9) is the same. It

follows (9) implies (8) whenever γ ≥ µ0 = 1/2.

We now establish that whenever the program (5) attains a value strictly greater

than 1, it admits a solution (β, γ, k) with γ = γ∗ := 3/4. To see γ ≥ γ∗ if v∗χ(µ0) > 1,

observe that if γ < γ∗, then v∗(β, γ, k) ≤ kv̄(γ) + (1 − k)v̄(γ) = v̄(γ) = v(γ) ≤ 1

must hold for any (β, k) such that (β, γ, k) is feasible. Next, we argue one can modify

any (β, γ, k) with γ > γ∗ in a way that replaces γ with γ∗ and does not decrease S’s

objective. For this purpose, let k∗ := kβ,γ∗ , and observe that β ≤ µ0 < γ∗ < γ implies

(β, γ∗, k∗) satisfies (R-BP) and k∗ ≤ k. In addition,

(1− k∗)(1− γ∗) = (1− µ0)− k∗(1− β)

≥ (1− µ0)− k(1− β)

= (1− k)(1− γ)

≥ (1− χ)(1− µ0),

where the equalities hold because both (β, γ, k) and (β, γ∗, k∗) satisfy (R-BP), the first

inequality holds because k∗ ≤ k, and the second inequality holds because (β, γ, k)

satisfies (9). Hence, (β, γ∗, k∗) satisfies (9), and therefore (χ-BP). Thus, (β, γ∗, k∗)

is feasible in program (5). Moreover, that v̄(γ∗) = v̄(γ) > v̂∧γ(β) and k∗ ≤ k im-
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plies v∗(β, γ∗, k∗) ≥ v∗(β, γ, k). Thus, because (β, γ, k) is optimal, (β, γ∗, k∗) must be

optimal as well.

Collecting our observations to this point, we have that it is enough to choose (β, γ, k)

so that either

(a) β = γ = µ0 and k = 0, which is always feasible, or

(b) β ∈ [0, µ0], γ = γ∗, and k = kβ,γ, which is feasible if and only if (9) holds.

Moreover, we know that decreasing β in case (b) always relaxes (9) by lowering kβ,γ.

Thus, letting

ṽ∗(β) := v∗(β, γ∗, kβ,γ∗)

for β ∈ [0, µ0], it follows S’s optimal value is the higher of 1 (the payoff she attains in

case (a)) and the maximal payoff attainable in case (b), which is given by supβ ṽ
∗(β),

where the supremum is taken over the interval of β ∈ [0, µ0] that satisfy (9) when

paired with γ∗ and kβ,γ∗ .

To see which of the above two cases is optimal, we can use the formula for v̂ derived

in (2) to compute

ṽ∗(β) = kβ,γ∗ v̂∧γ(β) + (1− kβ,γ∗)v̄(γ∗)

= γ∗−µ0

γ∗−β v̂(β) + µ0−β
γ∗−β2

=

1 + 1/(3− 4β) if β ∈ [0, 1/4],

3/2 if β ∈ [1/4, 1/2].

Observe the above objective is increasing on [0, 1/4], constant on [1/4, µ0], and globally

strictly higher than 1 = v(µ0). It follows that case (a) is optimal only when no

β ∈ [0, µ0] can satisfy (9) when paired with γ∗ and kβ,γ∗ . In addition, whenever such a

β is feasible, it is optimal to set it to be the highest feasible value below 1/4 from case

(b).

Let us solve the program. First, if χ < 2/3, then even setting β = 0 (which relaxes

(9) as much as possible) violates (9), and so we cannot improve upon feasible solution

(β, γ, k) = (1/2, 1/2, 0), which yields value v∗χ(µ0) = 1. Second, if χ ≥ 3/4, then

setting β = 1/4 satisfies (9) and maximizes ṽ∗(β), so that (β, γ, k) = (1/4, 3/4, 1/2) is

optimal—delivering the full-commitment value of v∗χ(µ0) = 3/2. Finally, consider the
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case in which 2/3 ≤ χ < 3/4. In this case, direct computation shows

β∗χ =
3χ− 2

4χ− 2
∈ [0, 1/4]

uniquely satisfies (9) with equality, and so is the highest feasible value of β. Because

kβ∗χ,γ∗χ = 2χ− 1, it follows that (β, γ, k) = (β∗χ, 3/4, 2χ− 1) solves (5), giving S a utility

of v∗χ(µ0) = ṽ∗χ(β∗χ) = 2χ.

To summarize, S’s maximal equilibrium payoff is given by

v∗χ(1/2) =


1 if χ < 2

3
,

2χ if χ ∈
[

2
3
, 3

4

]
,

3/2 if χ ≥ 3
4
.

The way S obtains the above value depends on χ. When χ < 2/3, it is best for S to

leave R uninformed. When χ = 1, S is best commissioning the report described in the

introduction, ξ1. To obtain her full-credibility payoff when χ ∈ [3/4, 1), S commissions

a report that induces the same information about θ in equilibrium. Specifically, S uses

an official experiment that sends either m1 or m0 according to

ξ∗χ(m1|1) = 1− 1

4χ
, ξ∗χ(m0|0) =

3

4χ
,

whereas influenced reporting sends m1 regardless of the state.

To find S’s optimal equilibrium when χ ∈ [2/3, 3/4), we begin by using the solution

to (5) to find the distribution of R’s posterior belief via a two-step procedure. First,

one splits µ0 into β with probability kβ,γ, and γ with probability 1 − kβ,γ. Second,

one splits the first step’s outcome across the nearest posteriors that include it in their

convex hull and for which v agrees with the appropriate envelope—v̂∧γ for β, and v̄ for

γ. Examining Figure 4 reveals that splitting γ∗χ = 3/4 is not necessary, whereas β∗χ is

split across 1/4 and 0, with probability 4β and 1− 4β, respectively. Thus, S’s optimal

equilibrium induces three posteriors, 3/4, 1/4, and 0, with probability 1 − kβ∗χ,γ∗χ =

2 − 2χ, 4β∗χkβ∗χ,γ∗χ = 6χ − 4, and kβ∗χ,γ∗χ(1 − 4β∗χ) = 3 − 4χ, respectively.12 Given this

posterior distribution, one can construct a χ-nonical equilibrium in which influenced

reporting sends only the messages that split γ, whereas the official report sends all on-

path messages. Letting mµ be the message inducing posterior µ ∈ {0, 1/4, 3/4}, this

12If χ = 2/3, posterior 1/4 has zero probability.
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µ
10 β

v̂∧γ(β)

γ

v̄(γ)

µ0

kv̂∧γ(β) + (1− k)v̄(γ)

Figure 4: Calculating S value for feasible β and γ for Example 1.

equilibrium has σ sending m3/4 regardless of the state, and the official report being

equal to

ξ∗χ(m0|0) =
6

χ
− 8, ξ∗χ(m 1

4
|0) =

6

5χ
[6χ− 4] ,

ξ∗χ(m0|1) = 0, ξ∗χ(m 1
4
|1) =

4

5χ
[6χ− 4] .

Example 2 (continued). Recall the state is binary, Θ = {0, 1}, and that µ0{1} = 1/3.

R chooses an action in A = [0, 1] to minimize quadratic loss, uR(a, θ) = −(a − θ)2,

whereas S wants R’s action to be as far away from 1/3 as possible, uS(a) = (a− 1/3)2.

Identifying each belief with the probability it assigns state 1, a∗(µ) = µ is R’s unique

best response, and S’s value function is given by

v(µ) = uS(a∗(µ)) = (µ− 1/3)2 = 1/9 + (µ− 2/3)µ.

Let us find S’s favorite χ-equilibrium when χ is intermediate. By Theorem 1, S’s

value in this case is given by the program (5). A straightforward computation reveals

v̂∧γ(µ) =


1
9

if γ ≤ 2
3
,

1
9

+
(
γ − 2

3

)
γ if µ ≥ γ > 2

3
,

1
9

+
(
γ − 2

3

)
µ if γ ≥ max{µ, 2

3
}.

Figure 5 plots v̂∧γ for different γ, putting the probability R’s belief assigns to state 1

on the horizontal axis. As can be seen in the figure, v̂∧γ(µ) increases in an affine way

24



for µ ∈ [0, γ] and remains flat at v̄(γ) thereafter.

We now argue one can focus on the case in which β ≤ µ0 ≤ γ and β 6= γ. For this

purpose, recall (R-BP) can be satisfied if and only if either β ≤ µ0 ≤ γ, or γ ≤ µ0 ≤ β.

Notice in the latter case v̂∧γ(·) is constant and equals 1/9 for all beliefs, which is also

attainable by setting γ = β = µ0. Moreover, (µ0, µ0, χ) trivially satisfies (χ-BP).

Therefore, the program (5) attains a value if and only if this value is feasible for some

β ≤ µ0 ≤ γ, and so one can restrict attention to this case. Moreover, the value attained

by setting β = γ = µ0 can also be attained by setting (β, γ, k) = (0, µ0, 0), so we may

further take β 6= γ without loss of optimality.

Next, given β ≤ µ0 ≤ γ and β 6= γ, we show we can always set β = 0 at the

optimum. For an explanation, recall (R-BP) can be satisfied only if k = kβ,γ (see

equation (7) and the surrounding discussion). Because β ≤ µ0 ≤ γ, kβ,γ is decreasing

with β, and so lowering β relaxes (χ-BP). Therefore, replacing β with β = 0 does not

hurt feasibility. Moreover, such a replacement has no impact on v∗’s value, because

v̂∧γ is affine on [0, γ] (see Figure 5). Hence, if (β, γ, kβ,γ) solve (5), so do (0, γ, k0,γ).

Thus, we have reduced the task of solving (5) to finding the γ ∈ [µ0, 1] that max-

imizes v∗(0, γ, k0,γ), subject to (χ-BP). A simple calculation reveals v∗(0, γ, k0,γ) =

v̂∧γ(µ0), and so increases with γ (see Figure 5). Therefore, to solve the program, we

need to choose γ to equal the highest value (χ-BP) allows. To find this value, we

substitute k0,γ = γ/µ0 into (χ-BP) to obtain two inequalities,

µ0 ≥ (1− χ)µ0 (10)
µ0

γ
(1− γ) ≥ (1− χ) (1− µ0) . (11)

Notice (10) holds for all χ, and so the only binding constraint is (11). Rearranging this

constraint and substituting µ0 = 1/3 shows it is equivalent to

γ ≤ 1/(3− 2χ) ∈ [1/3, 1].

Saturating this constraint, we obtain S’s utility in her favorite equilibrium is

v∗χ(µ0) =

1/9 if χ ≤ 3/4,

2χ/[3(9− 6χ)] otherwise.

To obtain this value, S commissions a binary-message official report. When χ ≤
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µ
10 µ0

v̄

γ′′′

v̄(γ′′′) v̂∧γ′′′

γ′′

v̄(γ′′) v̂∧γ′′

γ′

v̄(γ′) v̂∧γ′

Figure 5: The concave envelope (v̂∧γ) of the capped value function (v∧γ) for various
values of γ for Example 2.

3/4, this report equals S’s strategy in her best 0-equilibrium, which also equals S’s

influencing strategy. When χ > 3/4, the official report is fully revealing, and S pretends

the state is 1 whenever the report is not credible.

4 Varying Credibility

This section uses Theorem 1 to conduct general comparative statics in the model’s finite

version. First, we study how a decrease in S’s credibility affects R’s value. In particular,

we provide sufficient conditions for R to benefit from a less credible S. Second, we show

that small reductions in S’s credibility can often lead to a large drop in S’s payoffs.

Finally, we note these drops rarely occur at full credibility. In other words, the full

credibility value is usually robust to small imperfections in S’s commitment power.

4.1 Productive Mistrust

We now study how a decrease in S’s credibility affects R’s value and the informative-

ness of S’s equilibrium communication. In general, the less credible the sender, the

smaller the set of equilibrium information policies.13 However, that the set of equi-

librium policies shrinks does not mean less information is transmitted in S’s preferred

equilibrium. Our introductory example is a case in point, showing that lowering S’s

13See Lemma 1 in the appendix. In particular, as credibility decreases, the lemma’s condition 3
becomes more restrictive.
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credibility can result in a more informative equilibrium (à la Blackwell, 1953). More-

over, in that example, this additional information is used by R, who obtains a strictly

higher value when S’s credibility is lower. In what follows, we refer to this phenomenon

as productive mistrust and provide sufficient conditions for it to occur.

Our key sufficient condition involves S’s optimal information policy under full cred-

ibility. Given prior µ, an information policy p ∈ R(µ) is a show-or-best (SOB) policy

if it is supported on {δθ}θ∈Θ ∪ argmaxµ′∈∆[supp(µ)] v(µ′). In words, p is an SOB policy if

it either shows the state to R or brings R to a posterior that attains S’s best feasible

value. Say S is a two-faced SOB if, for every binary-support prior µ ∈ ∆Θ, every

p ∈ R(µ) is outperformed by an SOB policy p′ ∈ R(µ); that is,
∫

∆Θ
v dp ≤

∫
∆Θ

v dp′.

Figure 6 depicts an example in which S is a two-faced SOB. Note productive mistrust

cannot occur in this example: One can show that if S’s favorite equilibrium policy

changes as credibility declines, no information must become S-optimal.14 As such, R

need not benefit from a less credible S.

Finally, say a model is generic if R is (i) not indifferent between any two actions

at any degenerate belief, and (ii) not indifferent between any three actions at any

binary-support belief.15

µ

V

v̂

Figure 6: Sender is a two-faced SOB

Proposition 1 below shows that in generic finite settings, S not being a two-faced

SOB is sufficient for productive mistrust to occur for some full-support priors at some

14For an explanation, observe the claim is obvious for priors that allow S to attain her first-best
under no information. For other priors, a feasible (k, β, γ) exists that improves on S’s no-information
payoff if and only if a feasible (k, β, γ) exists giving S her full-credibility payoff.

15Given a fixed finite A and Θ, genericity holds for (Lebesgue) almost every uR ∈ RA×Θ. In partic-

ular, it holds if uR(a, θ) 6= uR(a′, θ) for all distinct a, a′ ∈ A and all θ ∈ Θ, and uR(a1,θ1)−uR(a2,θ1)
uR(a1,θ2)−uR(a2,θ2) 6=

uR(a2,θ1)−uR(a3,θ1)
uR(a2,θ2)−uR(a3,θ2) for all distinct a1, a2, a3 ∈ A and all distinct θ1, θ2 ∈ Θ.
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credibility levels. Intuitively, S being an SOB means a highly credible S has no bad

information to hide: under full credibility, S’s bad messages are maximally informative,

subject to keeping R’s posterior fixed following S’s good messages. S not being an SOB

at some prior means her bad messages optimally hide some instrumental information.

By reducing S’s credibility just enough to make the full-credibility solution infeasible,

one can push her to reveal some of that information to R. In other words, S commits to

potentially revealing more extreme bad information in order to preserve the credibility

of her good messages. Proposition 1 below formalizes this intuition.

Proposition 1. Consider a finite and generic model in which S is not a two-faced SOB.

Then, a full-support prior and credibility levels χ′ < χ exist such that every S-optimal

χ′-equilibrium is strictly better for R than every sender-optimal χ-equilibrium.16

The proposition builds on the binary-state case, extending to the general case via

a continuity argument. We now sketch the binary-state argument. To follow the

argument, consulting Figure 7, which depicts the relevant objects for the central bank

example, is useful. Because the model is generic, v̄ has a non-degenerate interval of

maximizers (which correspond to beliefs in [3/4, 1] in the figure). Fixing a prior near

this interval but toward the nearest kink, we then find the lowest χ ∈ [0, 1] at which

S still obtains her perfect credibility value. In the central-bank example, one can use

any prior in (1/4, 3/4). If we choose µ0 = 1/2, we take χ to be 3/4, which is the

lowest credibility level that delivers S’s full-commitment payoff. At this χ, S’s favorite

equilibrium information policy p is unique and is supported on the beliefs (β, γ) that

solve Theorem 1’s program (see γ = 3/4 and β = 1/4 in the figure). These beliefs are

interior, and v̂ has a kink at β. Although γ remains optimal in Theorem 1’s program

for any additional small reduction in credibility, (χ-BP) means one must replace β

with a new belief β′ that is further from the prior. Relying on the set of beliefs being

one-dimensional, we show this new solution results in an information policy p′ that

is strictly more informative than p. Intuitively, one can attain p′ from p using two

consecutive splittings, each of which involves an increase in informativeness: First, β

is split between γ and β′, and then β′ is split between β and another posterior (0 in

the figure). This posterior lies even further from the prior than β′ does, and gives S a

strictly lower continuation value than β. Hence, the additional information p′ provides

to R over p is instrumental, strictly increasing R’s utility.

16Moreover, when |Θ| = 2, every sender-optimal χ′-equilibrium is more Blackwell-informative than
every sender-optimal χ-equilibrium.
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Figure 7: Productive mistrust in Example 1.

4.2 Collapse of Trust

Theorem 1 immediately implies lowering S’s credibility can only decrease her value.17

Below, we show this decrease is often discontinuous. In other words, small decreases

in S’s credibility often result in a large drop in S’s benefits from communication.

Proposition 2. In a finite model, the following are equivalent:

(i) A collapse of trust never occurs:

lim
χ′↗χ

v∗χ′(µ0) = v∗χ(µ0)

for every χ ∈ [0, 1] and every full-support prior µ0.

(ii) Commitment is of no value: v∗1 = v∗0.

(iii) No conflict occurs: v(δθ) = max v(∆Θ) for every θ ∈ Θ.

Let us sketch Proposition 2’s proof. To this end, notice two of the proposition’s

three implications are immediate. First, whenever no conflict occurs, S can reveal

the state in an incentive-compatible way while obtaining her first-best payoff (given

R’s incentives), meaning commitment is of no value; that is, (iii) implies (ii). Second,

because S’s highest equilibrium value increases with her credibility, commitment having

17In Appendix A.1.3 we show credibility increases have a continuous payoff effect: a sufficiently
small increase in S’s credibility never results in a large gain in S’s benefits from communication.
Thus, S’s value is an upper semicontinuous function of χ. Proposition 2 implies lower semicontinuity
is frequently violated.
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no value means S’s best equilibrium value is constant (and, a fortiori, continuous) in

the credibility level; that is, (ii) implies (i).

To show (i) implies (iii), we show that any failure of (iii) implies the failure of (i). To

do so, we fix a full-support prior µ0 at which v̄ is minimized. Because conflict occurs,

v̄ is nonconstant and thus takes values strictly greater than v̄(µ0). By Theorem 1, one

has that v∗χ(µ0) > v̄(µ0) if and only if a feasible triplet (β, γ, k) with k < 1 exists such

that v̄(γ) > v̄(µ0). Using upper semicontinuity of v̄, we show such a triplet is feasible

for credibility χ if and only if χ is weakly greater than some strictly positive χ∗. We

thus have

v∗χ∗(µ0) ≥ kv̄(µ0) + (1− k)v̄(γ) > v̄(µ0) = max
χ∈[0,χ∗)

v∗χ(µ0),

where the first inequality follows from µ0 minimizing v̄; that is, a collapse of trust

occurs.

4.3 Robustness of the Commitment Case

Given the large and growing literature on optimal persuasion with commitment, one

may wonder whether the commitment solution is robust to small decreases in S’s cred-

ibility. Proposition 3 shows the answer is almost always.

Proposition 3. In a finite model, the following are equivalent:

(i) The full-commitment value is robust: limχ↗1 v
∗
χ(µ0) = v∗1(µ0) for every full-

support µ0.

(ii) S gets the benefit of the doubt: Every θ ∈ Θ is in the support of some member of

argmaxµ∈∆Θ v(µ).

Thus, the proposition shows S’s full-credibility value is robust if and only if S can

persuade R to take her favorite action without ruling out any states. A sufficient

condition for the latter is that R is willing to take S’s preferred undominated action

at some full-support belief, a property that holds generically whenever the model is

finite.18 Thus, although small decreases in credibility often lead to a collapse in S’s

value, these collapses rarely occur at χ = 1.

The argument behind Proposition 3 establishes a four-way equivalence between

18More precisely, Proposition 3 implies S’s full-credibility value is robust whenever an S-best action
among those not strictly dominated for R is a best reply for some full-support belief. It follows from
Lemma 1 in Lipnowski, Ravid, and Shishkin (2021) that this property holds for Lebesgue-almost every
preference specification for fixed finite A and Θ.
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(a) S getting the benefit of the doubt,

(b) v̄ being maximized by a full-support prior γ,

(c) a full-support γ existing such that v̂∧γ and v̂ agree over all full-support prior(s),

and

(d) robustness to limited credibility.

To see (a) implies (b), notice that whenever S gets the benefit of the doubt, one can

find a full-support prior in the convex hull of the beliefs in which R is willing to give

S her first-best action. Splitting this prior across those beliefs gives an information

policy that delivers S her highest feasible payoff for all posteriors, meaning S can

attain this payoff using cheap talk. For the converse direction, one can use the fact

that max v̄(∆Θ) = max v(∆Θ). Specifically, this fact implies v̄ is maximized at a full-

support prior γ if and only if one can split γ in a way that attains v’s maximal value at

all posteriors, because v̄ gives S’s highest cheap-talk payoff for every prior. S getting

the benefit of the doubt then follows from γ having full support.

For the equivalence of (b) and (c), note that in finite models, v̂ and v̂∧γ are both

continuous. Therefore, the two functions agree over all full-support priors if and only

if they are equal, which is equivalent to the cap on v∧γ being non-binding; that is, γ

maximizes v̄.

To see why (c) is equivalent to (d), fix some full-support µ0, and consider two

questions about Theorem 1’s program. First, which beliefs can serve as γ for χ < 1

large enough? Second, how do the optimal (k, β) for a given γ change as χ goes to 1?

For the first question, the answer is that γ is feasible for some χ < 1 if and only if γ has

full support.19 For the second question, one can show it is always optimal to choose

(k, β) so as to make (χ-BP) bind while still satisfying (R-BP).20 Direct computation

reveals that as χ goes to 1, every such (k, β) must converge to (1, µ0). Combined,

19Suppose the model is finite. It is easy to see that every full-support γ admits some β and k < 1
that make (R-BP) hold. Moreover, (χ-BP) is also satisfied at (β, γ, k) for all sufficiently high χ,
because (χ-BP)’s right-hand side converges to zero as χ → 1. Conversely, observe that if γ(θ) = 0,
(χ-BP) is violated at θ for all χ < 1, because µ0 has full support.

20To see why, for any feasible (k, β, γ), a (k′, β′) exists such that (k′, β′, γ) is feasible, (χ-BP) binds,
and k′ ≥ k. By (R-BP), β′ = k

k′ β +
(
1− k

k′

)
γ. Because v̂∧γ is concave and v̂∧γ(γ) = v̄(γ),

k′v̂∧γ (β′) + (1− k′)v̄(γ) = k′v̂∧γ
(
k
k′ β +

(
1− k

k′

)
γ
)

+ (1− k′) v̄(γ)

≥ kv̂∧γ (β) + (k′ − k) v̂∧γ (γ) + (1− k′) v̄(γ) = kv̂∧γ (β) + (1− k) v̄(γ).
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one obtains that as χ increases, S’s optimal value converges to maxγ∈int(∆Θ) v̂∧γ(µ0).

Thus, S’s value is robust to limited credibility if and only if some full-support γ exists

for which v̂∧γ = v̂ for all full-support priors; that is, (c) is equivalent to (d). The

proposition follows.

5 Persuading the Public

This section uses our results to analyze a situation in which a single sender is interested

in persuading a population of receivers to take a favorable action. For example, S could

be a government of a small open economy trying to encourage foreigners to invest in

the local market, a seller advertising to entice consumers to buy her product, or a

leader vying for the support of her populace. To persuade the receivers, S commissions

a weak institution (e.g., a central bank, product reviewer company, or state-owned

media outlet) to issue a public report. In this section, we analyze the S-optimal report

under partial credibility.

We modify our model as follows. The report of S’s institution is now publicly

revealed to a unit mass of receivers. After observing the institution’s report, receivers

simultaneously take a binary action. Each receiver i cares only about his own action,

ai ∈ A = {0, 1}. Receiver i’s payoff from ai is given by ai(θ− ωi), where θ ∈ Θ = [0, 1]

is the unknown state, distributed according to an atomless, full-support prior µ0, and

ωi ∈ R is receiver i’s type. The mass of receivers whose type is below ω is given by

H(ω), an absolutely continuous cumulative distribution function whose density h is

continuous, strictly quasiconcave, and strictly positive on (0, 1). S’s objective is to

maximize the proportion of receivers taking action 1.

An equilibrium of the modified game is tuple, (ξ, σ, α, π), where ξ : Θ → ∆M ,

σ : Θ → ∆M , and π : M → ∆Θ respectively represent S’s official report, S’s strategy

when not committed, and the public’s belief mapping, as in the original game. We let

α : M → [0, 1] represent the proportion of receivers taking action 1 conditional on the

realized message. Observe action 1 is optimal for receiver i if and only if ωi ≤ Eµ,

where µ ∈ ∆Θ is the publicly held posterior about θ, and E maps beliefs to their

associated expectations.21 As such, given a posterior µ, the proportion of receivers

taking action 1 is given by H(Eµ). Thus, a χ-equilibrium is a tuple (ξ, σ, α, π) in

which π is derived from µ0 via Bayes’ rule, α(·) = H(Eπ(·)), and σ(θ) is supported on

21That is, Eµ :=
∫
θ dµ(θ) for all µ ∈ ∆Θ.
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arg maxm∈M α(m) for all θ.

Theorem 1 applies readily to the current setting. Because H(Eµ) is the proportion

of the population taking action 1 given posterior µ ∈ ∆Θ, S’s continuation payoff from

a public message inducing µ is v(µ) := H(Eµ). Taking v to be S’s value function, we

can directly apply Theorem 1 to the current game.

Next, we use Theorem 1 to find S’s optimal χ-equilibrium. We begin with the

extreme credibility levels. Suppose first S has no credibility; that is, χ = 0. In

this case, S’s optimal value is given by the quasiconcave envelope of S’s value function

evaluated at the prior, v̄(µ0). Because an increasing transformation of an affine function

is quasiconcave, v = H ◦ E = v̄. Hence, with no credibility, S cannot benefit from

communication.

Suppose now that S has full credibility; that is, χ = 1. In this case, S’s maximal

χ-equilibrium value equals v’s maximal expected value across all information policies,

p ∈ R(µ0). Notice that a given information policy p yields an expected value of∫
H(·) dµ, where µ = p ◦ E−1 ∈ ∆Θ is the distribution of the population’s posterior

mean. As such, maximizing S’s value across all information policies is the same as

maximizing the expectation of H(·) across all posterior mean distributions produced

by some information policy. Such posterior mean distributions are characterized via the

notion of mean-preserving spreads.22 Formally, we say µ ∈ ∆Θ is a mean-preserving

spread of µ̃ ∈ ∆Θ, denoted by µ � µ̃, if

∫ θ̂

0

µ[0, θ] dθ ≥
∫ θ̂

0

µ̃[0, θ] dθ, ∀θ̂ ∈ [0, 1], with equality at θ̂ = 1. (MPS)

As noted by the literature, in this setting, mean-preserving spreads are synonymous

with more information. To be more precise, say that an information policy p is more

informative than another information policy p′ if every decision-maker prefers p to p′.

Then, p being more informative than p′ implies the posterior-mean distribution induced

by p is a mean-preserving-spread of the one induced by p′. Moreover, if µ � µ′, one can

find two information policies, p, p′, with the property that p is more informative than

p′, and such that p and p′ induce µ and µ′, respectively. Because µ0 is the posterior-

mean distribution induced by full information, it follows µ can arise as the posterior

mean distribution of some information policy if and only if µ0 � µ. Therefore, S’s

22See Blackwell and Girshick (1979) and Rothschild and Stiglitz (1970).
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value under full credibility is given by

v̂(µ0) = max
µ∈∆Θ: µ�µ0

∫
H(·) dµ.

The solution to the above program is dictated by the shape of the CDF H. Because the

CDF’s density, h, is strictly quasiconcave, H is a convex-concave function over [0, 1].

Said differently, some ω∗ ∈ [0, 1] exists such that H is strictly convex on [0, ω∗] and

strictly concave on [ω∗, 1]. As noted by Kolotilin (2018) and Dworczak and Martini

(2019), when H is convex-concave, the above program can be solved via θ∗ upper

censorship, which we now formally define.23 Under full credibility, θ∗ upper censorship

arises whenever S’s official report reveals (pools) all states below (above) θ∗. Given such

an official reporting protocol, it is optimal for S to say the state is above θ∗ whenever

she influences the report. Thus, we say (ξ, σ) is a θ∗-upper-censorship pair if every

θ ∈ Θ has σ(·|θ) = δ1 and24

ξ(·|θ) =

δθ if θ ∈ [0, θ∗),

δ1 if θ ∈ [θ∗, 1].

We refer to the resulting distribution of posterior means as a θ∗ upper censorship of

µ0. One can describe this distribution formally by introducing some notation. For

a bounded measurable f : Θ → R+ and µ ∈ ∆Θ, define the measure fµ on Θ via

fµ(Θ̂) :=
∫

Θ̂
f dµ for each Borel Θ̂ ⊆ Θ. Then, the θ∗ upper censorship of µ0 is

given by

1[0,θ∗)µ0 + µ0[θ∗, 1]δEµ0 [θ|θ≥θ∗].

Observe this distribution coincides with µ0 below the cutoff. Above the cutoff, the

distribution has a single atom at the mean of µ0’s conditional on θ being above θ∗. At

the optimum, θ∗ is chosen so that the atom lies in the concave region of H.

We find upper-censorship pairs are also optimal when credibility is partial, although

the reasoning is more delicate. One complication is that not every upper-censorship

pair induces a χ-equilibrium. The reason is that under partial credibility, the posterior

23That upper censorship solves the full-credibility problem has been discussed by the aforementioned
papers under slightly different assumptions. Still, we provide an elementary proof in the appendix for
completeness.

24Observe our description θ∗-upper-censorship pair breaks from the common convention used in
the literature (e.g., Kolotilin, 2018; Dworczak and Martini, 2019) of identifying messages with their
induced posterior mean. In particular, R’s posterior mean conditional on m = 1 need not equal 1.
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mean following message 1 can be strictly below the posterior mean induced by other

messages, thereby violating S’s incentive constraints. To avoid such a violation, the

mean induced by message 1 must be above the upper-censorship cutoff, θ∗, which holds

if and only if25 ∫
(θ − θ∗)(1− 1[0,θ∗)χ)dµ0(θ) ≥ 0. (θ∗-IC)

Observe that with intermediate credibility, the left-hand side of (θ∗-IC) is continuous

and strictly decreasing in θ∗, strictly positive for θ∗ = 0, and strictly negative for

θ∗ = 1.26 As such, (θ∗-IC) holds whenever θ∗ is below the unique upper-censorship

cutoff at which it holds with equality, a cutoff that we denote by θ̄χ.

Another complication arising from partial credibility is that a θ∗-upper-censorship

pair does not typically yield an upper censorship of µ0 as its posterior mean distribution.

Instead, every θ∗-upper-censorship pair with θ∗ ≤ θ̄χ turns out to yield a θ∗ upper

censorship of

µ̄χ := 1[0,θ̄χ)χµ0 +
(
1− χµ0[0, θ̄χ)

)
δθ̄χ ,

which is the posterior mean distribution induced by the θ̄χ-upper-censorship pair.27

Claim 1 below shows that upper censorship always yields an S-optimal χ-equilibrium.

Moreover, to find the optimal censorship cutoff, one can solve the full-credibility prob-

lem with the modified prior µ̄χ. As such, in this setting, partial credibility can be seen

as bounding the amount of information S can provide in equilibrium.

Claim 1. Some θ∗ ∈ [0, θ̄χ] exists such that the θ∗ upper censorship of µ̄χ, denoted by

µχ,θ∗, satisfies

v∗χ(µ0) = v̂(µ̄χ) =

∫
H(·) dµχ,θ∗ .

Moreover, the corresponding θ∗-upper-censorship pair is an S-optimal χ-equilibrium

that induces µχ,θ∗ as its posterior mean distribution.

The intuition for why v∗χ(µ0) ≥ v̂(µ̄χ) is straightforward. Recall v̂(µ̄χ) =
∫
H dµχ,θ∗ ,

where µχ,θ∗ is a θ∗ upper censorship of µ̄χ for some θ∗ ∈ [0, 1]. Because µ̄χ’s support

is in [0, θ̄χ], any θ upper censorship of µ̄χ for a θ above θ̄χ is just µ̄χ itself. Thus,

25To see this equivalence, note R’s posterior mean conditional on seeing message 1 from a θ∗-upper-

censorship pair equals
∫
θ[1[θ∗,1]χ+1−χ]dµ0∫
[1[θ∗,1]χ+1−χ]dµ0

=
∫
θ[1−1[0,θ∗)χ]dµ0∫
[1−1[0,θ∗)χ]dµ0

, which is larger than θ∗ only if (θ∗-IC)

holds.
26Recall µ0 is assumed to be an atomless, full-support distribution over [0, 1].
27That µ̄χ is induced by a θ̄χ-upper-censorship pair follows from the observation that this pair leads

R to have a posterior mean of θ̄χ after seeing m = 1.
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assuming θ∗ is in [0, θ̄χ] is without loss. Given such a θ∗, one can induce the posterior

mean distribution µχ,θ∗ in a χ-equilibrium (with the original prior µ0) using a θ∗-upper-

censorship pair. As such, S’s maximal χ-equilibrium value is at least as high as the

value generated by µχ,θ∗ ; that is, v∗χ(µ0) ≥
∫
H dµχ,θ∗ = v̂(µ̄χ).

To show v∗χ(µ0) ≤ v̂(µ̄χ), we use Theorem 1 to find an S-favorite χ-nonical equi-

librium that communicates less information than some θ∗-upper-censorship pair for

some θ∗ ≤ θ̄χ. Because more informative policies induce more spread-out distribu-

tions, it follows that this χ-nonical equilibrium induces a posterior mean distribution

that is a mean-preserving contraction of the distribution induced by the said θ∗-upper-

censorship pair, which in turn induces a mean-preserving contraction of µ̄χ. Because

the mean-preserving-spread relation is transitive, this S-favorite χ-nonical equilibrium

must induce a posterior mean distribution that is feasible under full commitment when

the prior is µ̄χ, and so v∗χ(µ0) ≤ v∗1(µ̄χ) = v̂(µ̄χ), as required.

6 Extensions and Discussion

6.1 Robustness and Equilibrium Selection

Proposition 3 shows S receiving the benefit of the doubt is necessary and sufficient for

robustness of S’s full-commitment value to small decreases in credibility, assuming S

can coordinate R toward the S-favorite χ-equilibrium. One might argue, however, that

imperfect credibility compromises S’s status as a principal and, through it, her ability

to choose which equilibrium is played. In Appendix B.2, we ask when S’s commitment

value is strongly robust, that is, when S’s almost-perfect credibility payoff equals the

best she can do with full commitment, regardless of which equilibrium is selected under

imperfect credibility. Under a finiteness condition, we show such robustness holds if and

only if S’s coordination ability is immaterial when credibility is perfect. Said differently,

S’s best commitment value is strongly robust if and only if S has only one equilibrium

payoff when χ = 1. Lipnowski, Ravid, and Shishkin (2021) provide necessary and

sufficient conditions for the latter condition to hold, and show these conditions hold

for Lebesgue-almost all instances of the finite model. Thus, S’s full-commitment value

typically remains robust even if she cannot dictate which equilibrium the players are

using.
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6.2 Signaling Credibility

Our baseline model assumes S announces her official report before knowing whether

the announcement is credible. In practice, S may be privy to institutional features

that affect her chances of influencing the report before she commissions it. To under-

stand such situations, Appendix B.3 considers a modified model in which S learns her

credibility type before announcing the official reporting protocol.

By letting S commission a different official report based on her credibility, the

modified model allows S to signal whether she can influence the report’s message.

However, such signaling turns out to have no impact on S’s attainable payoffs. More

precisely, every interim S-payoff profile (i.e., every pair specifying S’s payoffs conditional

on each credibility type) is attainable in a pooling equilibrium in which both credibility

types choose the same official experiment. It follows that pooling equilibria are without

loss as far as S payoffs are concerned.

Appendix B.3 also shows an S-payoff profile is attainable in a pooling equilibrium

if and only if it is attainable in a χ-equilibrium. That every pooling equilibrium payoff

profile is attainable in a χ-equilibrium follows from definition: a pooling equilibrium

of the modified game requires the same conditions as a χ-equilibrium, except S must

also be willing to announce the equilibrium experiment conditional on her credibility

type. For the converse direction, we show every χ-equilibrium can be implemented as

a pooling equilibrium of the signaling game by appropriately constructing R’s behavior

off path.

To summarize, the Appendix establishes a three-way equivalence between S’s pay-

offs in all equilibria of the signaling game, all pooling equilibria of the signaling game,

and χ-equilibria of the original game. It follows that informing S of her ability to

influence the report before its announcement has no impact on S’s achievable payoffs.

6.3 State-Dependent Credibility

Throughout the paper, we assumed S’s credibility is independent of the state of the

world. However, in many applications, it is natural for S’s credibility to be correlated

with the state. For example, an autocrat may be more likely to influence the media in

a rich economy with abundant resources than in a country where resources are scarce

(e.g., Egorov, Guriev, and Sonin, 2009). To capture such correlation, suppose the

probability of S’s official report when the state is θ is given by χ(θ). Whereas most

of the paper assumed the credibility function, χ : Θ → [0, 1] is constant, here we
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discuss the state-dependent credibility (SDC) model, which imposes no restrictions

on χ.28 We proceed informally, relegating the mathematical details to Appendix A.

Theorem 1 generalizes to the SDC model with a minor modification. To present this

modification, let us recall some convenient notation: given a bounded and measurable

f : Θ → R and µ ∈ ∆Θ, let fµ denote the measure on Θ given by fµ(Θ̂) :=
∫

Θ̂
f dµ.

Appendix A shows an S-optimal χ-equilibrium exists and yields S a utility of29

v∗χ(µ0) = max
β,γ∈∆Θ, k∈[0,1]

kv̂∧γ(β) + (1− k)v̄(γ) (12)

s.t. kβ + (1− k)γ = µ0,

(1− k)γ ≥ (1− χ)µ0. (χ-BP)

With the above characterization in hand, the propositions of section 4 extend to the

SDC model in a straightforward manner; see the Appendix for precise statements.

The SDC model allows us to analyze the value of credibility at different states for

specific examples. To illustrate, consider the public-persuasion example of section 5.

Recall that under state-independent credibility—that is, χ(θ) = χ for all θ—S uses

a θ∗-upper-censorship pair in her favorite equilibrium, where θ∗ is chosen to solve the

full-credibility problem with a modified prior. The same result remains true for the

SDC model. More precisely, let θ̄χ be the highest θ∗ such that θ∗-upper censorship is

a χ-equilibrium; that is, θ̄χ is the unique solution to∫
(θ − θ̄χ)(1− 1[0,θ̄χ)) dµ0(θ) = 0.

In addition, take µ̄χ to be the posterior-mean distribution that arises in the χ-equilibrium

in which S uses the θ̄χ-upper-censorship pair,

µ̄χ = 1[0,θ̄χ)χµ0 + (1− χµ0[0, θ̄χ))δθ̄χ .

Then, Claim 1 generalizes as is but with θ̄χ and µ̄χ, respectively, replacing θ̄χ and µ̄χ.

In other words, S’s maximal χ-equilibrium value is given by

v∗χ(µ0) = max
µ∈∆Θ:µ�µ̄χ

∫
H(·) dµ.

28As with all functions in this paper, we require χ to be Borel measurable.
29Let 1 and 0 denote constant functions taking value 1 and 0, respectively, when the domain is not

ambiguous.
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Armed with this generalization, we can see S is less constrained by her credibility

whenever µ̄χ increases in a mean-preserving-spread sense. Said differently, whenever

µ̄χ � µ̄χ̃, S prefers χ to χ̃ regardless of the population’s type distribution. Using a

constructive argument, one can show the converse is also true: S prefers χ to χ̃ for

all population-type distributions only if µ̄χ̃ is a mean-preserving spread of µ̄χ. We

present this result in Claim 2 below.

Claim 2. In the state-dependent-credibility version of the public-persuasion setting,

the following are equivalent:

(i) S prefers with χ over χ̃ for all type distributions.30

(ii) The distribution µ̄χ is a mean-preserving spread of µ̄χ̃.

(iii) For all θ ∈ [0, θ̄χ̃]:
∫ θ̂

0

∫ θ
0

(χ− χ̃) dµ0 dθ ≥ 0.

The economic intuition behind the claim is that credibility is most valuable when the

conflict between S’s ex-ante and ex-post incentives is large. This intuition is expressed

most clearly in the claim’s part (iii), which says S prefers credibility to be concentrated

in low states. Broadly speaking, low states are those that S benefits from revealing ex

ante but would like to hide ex post. The more credibility S has in those states, the less

S’s ex-post incentives interfere with his ex-ante payoffs, and so the higher S’s value is.

6.4 Investing in Credibility

Our analysis so far has taken the credibility of S’s institutions to be exogenously given.

Whereas this assumption seems reasonable for understanding short-run behavior, in

the long run, S may have the ability redesign her institutions. To accommodate such

situations, this section extends the state-dependent-credibility model of section 6.3 to

endogenize S’s credibility function χ. Specifically, suppose S can choose any measurable

χ : Θ→ [0, 1] at a cost of c
(∫
χ dµ0

)
prior to the persuasion game, where c : [0, 1]→ R+

is continuous and strictly increasing.31 Then, S chooses χ to solve

v∗∗c (µ0) = max
χ

[
v∗χ(µ0)− c

(∫
χ dµ0

)]
.

30That is, v∗χ(µ0) ≥ v∗χ̃(µ0) for all H admitting a continuous, quasiconcave density.
31The substantive results reported below would remain if we assigned each χ a cost of C(χ) for some
|| · ||∞-continuous C with the property that C(χ) > C(χ′) whenever χ ≥ χ′ and χ is not µ0-almost
surely equal to χ′.
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Clearly, S never invests in greater credibility than is necessary to induce her equilibrium

information. As such, S always chooses (χ, k, β, γ) so that (χ-BP) holds with equality.

Combining this observation with (R-BP) yields∫
χ dµ0 = kβ(Θ) = k.

S’s problem therefore reduces to

v∗∗c (µ0) = max
β,γ∈∆Θ, k∈[0,1]

kv̂∧γ(β) + (1− k)v̄(γ)− c(k)

s.t. kβ + (1− k)γ = µ0.

We now discuss how our results change when credibility is endogenized as above.

We begin by revisiting productive mistrust. Similar to R’s ability to benefit from a

decrease in exogenous credibility, R can also benefit from an increase in S’s credibility

costs. Recall our introductory example and suppose the cost function is given by

c(k) = λ
2
k2 for some λ > 0. For any λ ∈ [2, 3), one can verify S’s optimal investment

choice is unique and leads to the following equilibrium information policy:

p∗λ =

[
1−

(
6

λ
− 2

)](
1

3
δ0 +

2

3
δ 3

4

)
+

[
6

λ
− 2

](
1

2
δ 1

4
+

1

2
δ 3

4

)
.

Direct computation reveals R’s corresponding equilibrium payoff is 1
4
− 1

4λ
, which in-

creases with λ.32

Whereas reducing χ in our main model often leads to a discontinuous drop in S’s

payoff (Proposition 2), a uniformly small increase in c cannot. The reason is that the

set of feasible (β, γ, k) in Theorem 1’s program is independent of the cost, and the cost

enters S’s objective separably. Therefore,

|v∗∗c (µ0)− v∗∗c̃ (µ0)| ≤ ||c− c̃||∞.

Thus, in the endogenous-credibility model, small cost changes have small effects on S’s

value.

We now note that making credibility endogenous leads to simple institutional struc-

tures in the public-persuasion setting of section 5. To describe these structures, say χ

is a cutoff credibility function if a θ∗ ∈ [0, 1] exists for which χ(θ) = 1 whenever

32One can also verify that p∗λ is Blackwell-increasing in λ.
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θ < θ∗, and χ(θ) = 0 otherwise; that is, χ = 1[0,θ∗). The following proposition shows

it is optimal to choose cutoff credibility, that is, to invest in perfect credibility in low

states and none in high states.

Claim 3. An optimal credibility choice exists in the endogenous credibility version

of the public-persuasion setting. Moreover, any optimal choice (along with S-optimal

equilibrium) in this setting is a cutoff credibility function and entails full revelation by

the official reporting protocol.

The claim is based on three observations. The first observation is that S prefers to

concentrate her credibility in low states, which implies S can improve upon any non-

cutoff χ with a less expensive cutoff credibility function 1[0,θ∗). The second observation

is that it is S-optimal to use a θ̃-upper-censorship pair for some θ̃. Thus, S’s official

report reveals states below θ̃, whereas states above θ̃ are pooled into a single high

message that S sends for sure when influencing the report. The third observation is

that S never invests in extraneous credibility. It follows that setting θ∗ above θ̃ is

suboptimal, because a θ̃-upper-censorship pair treats states above θ̃ in the same way

under both influenced and official reporting. All that remains is to note that when

χ = 1[0,θ∗), the θ̃-upper-censorship pair’s official report always reveals the states on

path.

6.5 Simple Communication

Whereas our main theorem simplifies the task of finding S’s optimal χ-equilibrium,

it says nothing about the complexity of S’s communication with R. The following

proposition sheds light on this issue by providing restrictions on the total number of

messages required for implementing S’s favorite equilibrium.

Proposition 4. Some S-optimal χ-equilibrium exists with no more than |A| distinct

messages sent on path and no more than 2|Θ| − 1 distinct messages sent on path if Θ

is finite.33

The proposition’s bounds are known for the benchmark cases of full credibility and

no credibility. Kamenica and Gentzkow (2011) point out how, following the revela-

tion principle (Myerson, 1986), any official reporting protocol can be converted into

an outcome-equivalent direct-recommendation mechanism in which S recommends an

33The corollary’s bounds also hold when credibility is state-dependent, that is, for χ-equilibria.
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action to R and R always obeys. In the no-credibility case, analogously converting

an equilibrium into one with direct recommendations would not yield an appropriate

bound on the number of on-path messages, because S-optimal equilibrium sometimes

requires R to mix between different best responses to maintain S incentives. Neverthe-

less, Lipnowski and Ravid (2020) establish a revelation principle in the style of Bester

and Strausz (2001): any equilibrium S payoff of the no-credibility game can be attained

with every on-path message being a pure action recommendation. Even though R may

mix in response to a given pure action recommendation, the recommendation is always

one of his best responses—in fact an S-preferred best response—to the belief it induces.

Together, these two revelation principles show some S-optimal equilibrium entails no

more than |A| on-path messages if credibility is extreme.

Next, supposing Θ is finite, Kamenica and Gentzkow (2011) appeal to Carathéodory’s

theorem to show an S-optimal equilibrium exists in which the set of on-path beliefs

is affinely independent. Because every affinely independent subset of ∆Θ has cardi-

nality no greater than |Θ|, it follows that some S-optimal equilibrium entails no more

than |Θ| on-path messages in the full-credibility game. A nearly identical appeal to

Carathéodory’s theorem shows the same result holds for the no-credibility case as well.

Because |Θ| ≤ 2|Θ| − 1, it follows that the message bounds in the statement of the

proposition hold when credibility is extreme.

A naive application of the results for extreme χ to the case in which χ is inter-

mediate delivers message bounds that are higher than those of Proposition 4. For an

explanation, recall Theorem 1 transforms a (β, γ, k) that solves the program (5) into

an S-favorite χ-equilibrium by pasting together an S-optimal equilibrium of G(0, γ)

with an appropriately chosen S-optimal equilibrium of G(1, β). Hence, the maximal

number of messages required for S’s favorite χ-equilibrium must be lower than the

sum of the number used for the two component games. Thus, if one were to appeal

to the above-mentioned results without further argument, one would obtain message

bounds of 2|A| and (if Θ is finite) 2|Θ|, whereas Proposition 4 says these bounds can

be reduced to |A| and 2|Θ| − 1, respectively.

To obtain tighter bounds on the required number of messages, we show one can al-

ways choose (β, γ, k) so that the full-credibility game with prior β, G(1, β), admits an S-

favorite equilibrium (ξβ, σβ, αβ, πβ) with the property that every on-path message gives

S an expected payoff strictly below v̄(γ).34 Using this equilibrium, one can obtain the

34See Lemma 17. This lemma can also be useful in solving Theorem 1’s program. For example, in
the context of the central-bank example, the lemma directly implies setting β ≤ 1

4 is optimal whenever
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above-mentioned message bounds as follows. For the action-based bound, start by us-

ing Kamenica and Gentzkow’s (2011) revelation principle to implement (ξβ, σβ, αβ, πβ)

using action recommendations, and pick any S-optimal direct-recommendation equi-

librium of G(0, γ) as constructed by Lipnowski and Ravid (2020). Observe that the

former equilibrium uses only actions with an S-payoff strictly below v̄(γ), whereas only

actions with higher payoff are recommended by the latter. Therefore, the two equilib-

ria use disjoint action sets for their recommendations, and so one can paste the two

equilibria together without using more than |A| messages.

To tighten the state-based message bound, suppose Θ is finite and observe it is

enough to show some S-optimal equilibrium of G(0, γ) generates no more than |Θ| − 1

posterior beliefs for R (and so requires no more than |Θ| − 1 messages). Assume

otherwise for a contradiction. Then, γ is interior in the set of beliefs at which v̄ ≥
v̄(γ), and so we can move γ closer to the prior, while lowering k to preserve (R-BP),

and maintain (or raise) v̄(γ). Owing to the special structure of (β, γ, k), we know

v̂∧γ(β) < v̄(γ), so that this adjustment raises S’s expected payoff. Moreover, because

this adjustment makes (1− k)γ(θ) = µ0(θ)− kβ(θ) larger for every state θ, it relaxes

(χ-BP) and thus contradicts the optimality of (β, γ, k). It follows that the S-optimal

equilibria of G(0, γ) and G(1, β) require only |Θ| − 1 and |Θ| messages, respectively.

Pasting these equilibria together, one obtains an S-optimal χ-equilibrium with only

2|Θ| − 1 messages.

References
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Online Appendix

A Main Results

A.1 Toward the Proof of Theorem 1

Throughout this subsection, we work with the more general model with state-dependent

credibility χ laid out in subsection 6.3. In order to make the relationship even more

transparent, we adopt the following notational convention. For a compact metrizable

space Y , a probability measure µ ∈ ∆Y , and a function f : Y → R that is bounded

and measurable, let f(µ) :=
∫
Y
f dµ ∈ R denote the average value of f . In particular,

for any credibility function χ, the scalar χ(µ0) is simply the total probability that

the report is not subject to influence. While accommodating this more general model

entails some notational cost, all conceptual content of the proof is identical in the special

case of constant credibility, the generalization requiring no additional arguments. We

therefore encourage the reader to read the entire proof with the special case that the

function χ is a constant χ in mind.

We now provide a brief overview of the proof. The proof begins by showing an

equivalence between the set of χ-equilibrium outcomes, the set of χ-nonical equilib-

rium outcomes, and the existence of a particular decomposition of the equilibrium

information policy. This decomposition makes it easy to see the program (12) is a

relaxation of the program that maximizes S’s value across all χ-equilibrium outcomes.

In particular, the program (12) enables S to induce posteriors that would generate too

high a continuation payoff for S. The proof’s next part establishes this constraint is

non-binding at the optimum. We then conclude by explicitly writing the program that

finds S’s favorite equilibrium outcome and showing its value is identical to that of (12).

A.1.1 Characterization of All Equilibrium Outcomes

In this section, we characterize the full range of χ-equilibrium outcomes, which we

define below. In short, a χ-equilibrium outcome consists of a description of the infor-

mation R receives in equilibrium (which is jointly constructed by the official reporting

protocol and an influencing S’s messaging strategy), an expected payoff that S gets

conditional on the official reporting protocol being used, and an expected payoff that

S gets conditional on having the opportunity to influence.
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To present unified proofs including for the case of χ = 1 and χ = 0, we adopt the

notational convention that 0
0

= 1 wherever it appears.

In line with the main text, define the following straightforward generalization of a

A χ-nonical equilibrium to the case of state-dependent credibility.

Definition 1. A χ-nonical equilibrium is a χ-equilibrium (ξ, σ, α, π) such that

every Borel M̂ ⊆M∗
α has ξ(M̂ |·) = ξ(M∗

α|·) σ(M̂ |·).

The above definition imposes further structure on a χ-equilibrium. The requirement

pertains to the set M∗
α of highest-payoff messages for S, which are necessarily the only

messages an influencing S chooses. The condition says the conditional distribution

messages in M∗
α is identical for the official experiment and for an influencing sender’s

choices, in any state for which the official report sometimes sends messages in M∗
α.

Informally, the condition says all differences in how the official and influenced report

communicate are through whether or not they send a message in M∗
α in a given state.

Definition 2. Say (p, so, si) ∈ ∆∆Θ× R× R is a χ-equilibrium outcome if some

χ-equilibrium (ξ, σ, α, π) exists whose induced receiver belief distribution, official-report

sender payoff, and influenced-report sender payoff are (p, so, si), that is,

p =

(∫
Θ

[
χξ + (1− χ)σ

]
dµ0

)
◦ π−1

so =

∫
Θ

χ
χ(µ0)

∫
M

uS(α(m)) dξ(m|·) dµ0

si =

∫
Θ

1−χ
1−χ(µ0)

∫
M

uS(α(m)) dσ(m|·) dµ0.

If, further, (ξ, σ, α, π) is a χ-nonical equilibrium, then we say (p, so, si) is a χ-nonical

equilibrium outcome.

The following lemma adopts a belief-based approach, directly characterizing χ-

equilibrium outcomes of our game.

Lemma 1. For (p, so, si) ∈ ∆∆Θ× R× R, the following are equivalent:

1. (p, so, si) is a χ-equilibrium outcome;

2. (p, so, si) is a χ-nonical equilibrium outcome;

3. Some k ∈ [0, 1], g, b ∈ ∆∆Θ exist such that

2



(i) kb+ (1− k)g = p ∈ R(µ0);

(ii) (1− k)
∫

∆Θ
µ dg(µ) ≥ (1− χ)µ0;

(iii) g{µ ∈ ∆Θ : si ∈ V (µ)} = b{µ ∈ ∆Θ : minV (µ) ≤ si} = 1;

(iv) si − so ∈ k
χ(µ0)

[
si −

∫
supp(b)

si ∧ V db
]
.35

The first two parts of the lemma are self explanatory. The third part says that the

information policy p can be decomposed into two separate random posteriors, b and

g, satisfying three conditions. Condition (ii) says the barycenter of g satisfies (χ-BP).

Condition (iii) says R is willing to give S a continuation payoff equal to si after all

posteriors induced by g, and a lower continuation payoff for any posterior induced by

b. And condition (iv) says there is a way to select R’s best response to posteriors in b so

that no posterior generates a payoff above si and so that S’s average payoff conditional

on her report coming from the official protocol adds up to so.

We now give an overview of Lemma 1. Obviously, 2 implies 1. Therefore, the proof

proceeds by completing a cycle, showing that 1 implies 3, and that 3 implies 2. To

show 1 implies 3, we take an equilibrium and partition the set of on-path messages

into two subsets: the set of “good” messages for S to send (i.e., those that give S the

highest possible expected payoff out of any possible message), and the complementary

“bad” messages. Following this decomposition, one can obtain g and b by looking at

the distribution of R’s posterior beliefs conditional on the message being in the “good”

or “bad” set, respectively. Letting k be the probability S sends a “bad” message, one

obtains condition (i) from the usual Bayesian reasoning. Condition (ii) then follows

from similar reasoning as explained in the main text, whereas conditions (iii) and (iv)

follow from S’s incentive constraints. To prove 3 implies 2, we use the decomposition

provided by 3 to construct a χ-nonical equilibrium.

Proof. We show that 1 implies 3 and 3 implies 2, noting 2 obviously implies 1.

Let us first show 1 implies 3. To that end, suppose (ξ, σ, α, π) is a χ-equilibrium

35Here, si ∧ V : ∆Θ⇒ R is the correspondence with si ∧ V (µ) = (−∞, si] ∩ V (µ); it is a Kakutani
correspondence (because V is) on the restricted domain {minV ≤ si} ⊇ supp(b). The integral is the
(Aumann) integral of a correspondence:∫

supp(b)

si ∧ V db =

{∫
supp(b)

φdb : φ is a measurable selector of si ∧ V |supp(b)

}
.
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resulting in outcome (p, so, si). Let

G :=

∫
Θ

σ d
[

1−χ
1−χ(µ0)

µ0

]
and P :=

∫
Θ

[χξ + (1− χ)σ] dµ0 ∈ ∆M

denote the probability measures over messages induced by non-committed behavior

and by average sender behavior, respectively. Let k := 1− P (M∗
α) denote the ex-ante

probability that a suboptimal message is sent. Sender incentive compatibility (which

implies that σ(M∗
α|·) = 1) tells us that k ∈ [0,χ(µ0)]. Let B := 1

k
[P − (1 − k)G] if

k > 0; and let B :=
∫

Θ
ξ dµ0 otherwise. As barycenters of probability measures over

M , the measures G,P are in ∆M . Measure B on M therefore has total measure 1.

Therefore, B ∈ ∆M so long as B is a positive measure, that is, P ≥ (1− k)G. To see

this measure inequality, notice

(1− k)G = P (M∗
α)

∫
Θ

σ d
[

1−χ
1−χ(µ0)

µ0

]
≤
∫

Θ

σ d [(1− χ)µ0] ≤ P,

where the first inequality follows from sender incentives (implying influenced reporting

only sends messages in M∗
α). Now, define the induced belief distributions by these

two distributions over messages, g := G ◦ π−1 and b := B ◦ π−1. By construction,

kb+ (1− k)g = P ◦ π−1 = p ∈ R(µ0), that is, the first condition holds. Moreover, the

second condition holds:

(1− k)

∫
∆Θ

µ dg(µ) =

∫
M

π d[(1− k)G] =

∫
M∗α

π dP ≥ (1− χ)µ0,

where the inequality follows from the Bayesian property of π, together with the fact

that σ almost surely sends a message from M∗
α on the path of play. Next, observe

that for any m ∈ M , sender incentive compatibility tells us that uS(α(m)) ≤ si,

and receiver incentive compatibility implies α(m) ∈ V (π(m)). It follows directly that

g{V 3 si} = b{minV ≤ si} = 1, that is, the third condition holds. Toward the fourth

and final condition, let us view π, α as random variables on the probability space

〈M,P 〉. Defining the conditional expectation φ0 := EB[uS(α)|π] : M → R, the Doob-

Dynkin lemma delivers a measurable function φ : ∆Θ→ R such that φ ◦ π =B−a.e. φ0.

As uS(α(m)) ∈ si∧V (m) for every m ∈M , and the correspondence si∧V is compact-

and convex-valued, it must be that φ0 ∈B−a.e. si ∧ V (π). Therefore, φ ∈b−a.e. si ∧ V .

Modifying φ on a b-null set, we may assume without loss that φ is a measurable selector
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of si ∧ V . Observe now that∫
supp(b)

φ db =

∫
M

φ0 dB =

∫
M

EB[uS(α)|π] dB =

∫
M

uS ◦ α dB.

Therefore, since G(M∗
α) = 1,

so =

∫
M

uS ◦ α dP−[1−χ(µ0)]G
χ(µ0)

=

∫
M

uS ◦ α dkB+(1−k)G−[1−χ(µ0)]G
χ(µ0)

=

∫
M

uS ◦ α d
[(

1− k
χ(µ0)

)
G+ k

χ(µ0)
B
]

=
(

1− k
χ(µ0)

)
si + k

χ(µ0)

∫
supp(b)

φ db,

as required.

Now, we show 3 implies 2. As M is an uncountable Polish space, the Borel isomor-

phism theorem (Theorem 3.3.13 Srivastava, 2008) says M is isomorphic (as a measur-

able space) to {i, o}×∆Θ. We can therefore assume without loss that M = {i, o}×∆Θ.

Suppose k ∈ [0, 1], g, b ∈ ∆∆Θ satisfy the four listed conditions so that 3 holds; and

let φ be a measurable selector of si∧V |supp(b) with so =
(

1− k
χ(µ0)

)
si+

k
χ(µ0)

∫
supp(b)

φ db,

which the fourth condition assures us exists.

We will construct a χ-nonical equilibrium from these objects that induces outcome

(p, so, si).

Let us proceed in two cases. First, consider the case that so = si. In this case,

the fourth condition implies b{φ = si} = 1, so that p ∈ R(µ0) has p{V 3 si} = 1.

Hence, (V being upper hemicontinuous) Lipnowski and Ravid (2020, Lemma 1) delivers

an equilibrium (σ, α, π) of the pure cheap talk game generating receiver information

distribution p and sender payoff si. It follows immediately that (σ, σ, α, π) is a χ-nonical

equilibrium that induces outcome (p, si, si).

Henceforth, we focus on the remaining case that so < si. Without loss of generality,

we may further assume b{φ < si} = 1.36 Define β :=
∫

∆Θ
µ db(µ) and γ :=

∫
∆Θ

µ dg(µ).

Let measurable ηg : Θ → ∆[supp(g)] ⊆ ∆∆Θ and ηb : Θ → ∆[supp(b)] ⊆ ∆∆Θ be

signals that induce belief distribution g for prior γ and belief distribution b for prior

β, respectively, such that for each such signal the induced posterior belief is to equal

36Indeed, one could replace k with k̃ := kb{φ < si} > 0, replace b with b̃ := k
k̃
b ((·) ∩ {φ < si}), and

replace g with g̃ := 1
1−k̃ (p− k̃b̃).
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the message itself. That is, for every Borel Θ̂ ⊆ Θ and D̂ ⊆ ∆Θ,∫
Θ̂

ηb(D̂|·) dβ =

∫
D̂

µ(Θ̂) db(µ) and

∫
Θ̂

ηg(D̂|·) dγ =

∫
D̂

µ(Θ̂) dg(µ).

Take some Radon-Nikodym derivative dβ
dµ0

: Θ → R+; changing it on a µ0-null set, we

may assume that 0 ≤ k
χ

dβ
dµ0
≤ 1 since (1−k)γ ≥ (1−χ)µ0. With the above ingredients

in hand, we can define the sender’s influenced strategy and reporting protocol

σ := δi ⊗ ηg : Θ→ ∆M,

ξ :=
(
1− k

χ
dβ
dµ0

)
δi ⊗ ηg + k

χ
dβ
dµ0
δo ⊗ ηb : Θ→ ∆M.

Because Mi := {i} ×∆Θ obviously has σ(Mi|·) = 1 and ξ(M̂i|·) = ξ(Mi|·) σ(M̂i|·) for

every Borel M̂i ⊆ Mi, it will follow that a χ-equilibrium with sender play described

by (σ, ξ) is in fact a χ-nonical equilibrium, as long as the receiver strategy α satisfies

M∗
α ⊇Mi. To finish constructing such a χ-equilibrium, we define the receiver strategy

and belief map for our proposed equilibrium as follows. Intuitively, an on-path message

(i, µ) will lead to belief µ and a receiver best response that delivers payoff si to the

sender; an on-path message (o, µ) will lead to belief µ and receiver best response that

delivers a potentially lower payoff to the sender, calibrated to give the target average

payoff; and off-path messages are interpreted as equivalent to some on-path message

so as not to introduce new incentive constraints. Formally, fix some µ̂ ∈ supp(b),

which will serve as a default beliefs and incentive-compatible receiver response for any

off-path messages. We can then define a receiver belief map as

π : M → ∆Θ

m 7→

µ : m = (i, µ) for µ ∈ supp(g), or m = (o, µ) for µ ∈ supp(b)

µ̂ : otherwise.

Finally, by Lipnowski and Ravid (2020, Lemma 2), some measurable αb, αg : ∆Θ→ ∆A

exist such that:37

• αb(µ), αg(µ) ∈ argmaxα̃∈∆A uR(α̃, µ) ∀µ ∈ ∆Θ;

37The cited lemma delivers αb|supp(b), αg|supp(g). Then, as supp(p) ⊆ supp(b) ∪ supp(g), we can
extend both functions to the rest of their domains by making them agree on supp(p) \ [supp(b) ∩
supp(g)].
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• uS(αb(µ)) = φ(µ) ∀µ ∈ supp(b), and uS(αg(µ)) = si ∀µ ∈ supp(g).

From these selectors, we can define a receiver strategy as

α : M → ∆A

m 7→


αb(µ) : m = (o, µ) for some µ ∈ supp(b)

αg(µ) : m = (i, µ) for some µ ∈ supp(g)

αb(µ̂) : otherwise.

We want to show that the tuple (ξ, σ, α, π) is a χ-equilibrium (hence, a χ-nonical

equilibrium) resulting in outcome (p, so, si). It is immediate from the construction of

(σ, α, π) that sender incentive compatibility and receiver incentive compatibility hold,

and that the expected sender payoff is si given influenced reporting. It remains to

verify that the induced receiver belief distribution is p, that the Bayesian property is

satisfied, and that the expected sender payoff from the official report is so. We verify

these features below, via a tedious computation.

Recall χξ : Θ→ ∆M is defined as the pointwise product, i.e. for every θ ∈ Θ and

Borel M̂ ⊆ M , we have (χξ)(M̂ |θ) = χ(θ)ξ(M̂ |θ); and similarly for (1− χ)σ. To see

that the Bayesian property holds, observe that every Borel D ⊆ ∆Θ satisfies

[(1− χ)σ + χξ]({o} ×D|·) = k dβ
dµ0
ηb(D|·)

[(1− χ)σ + χξ]({i} ×D|·) =
[
(1− χ) + χ

(
1− k

χ
dβ
dµ0

)]
ηg(D|·)

=
(
1− k dβ

dµ0

)
ηg(D|·).

Now, take any Borel M̂ ⊆ M and Θ̂ ⊆ Θ, and let Dz :=
{
µ ∈ ∆Θ : (z, µ) ∈ M̂

}
for

z ∈ {i, o}. Observe that∫
Θ

∫
M̂

π(Θ̂|m) d[(1− χ)σ + χξ](m|·) dµ0

=

∫
Θ

(∫
{o}×Do

+

∫
{i}×Di

)
π(Θ̂|m) d[(1− χ)σ + χξ](m|·) dµ0

=

∫
Θ

[
k dβ

dµ0

∫
Do

µ(Θ̂) dηb(µ|·) +
(

1− k dβ
dµ0

)∫
Di

µ(Θ̂) dηg(µ|·)
]

dµ0

= k

∫
Θ

∫
Do

µ(Θ̂) dηb(µ|·) dβ +

∫
Θ

∫
Di

µ(Θ̂) dηg(µ|·) d[µ0 − kβ]
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= k

∫
Θ

∫
Do

µ(Θ̂) dηb(µ|·) dβ + (1− k)

∫
Θ

∫
Di

µ(Θ̂) dηg(µ|·) dγ

= k

∫
Do

∫
Θ

µ(Θ̂) dµ(θ) db(µ) + (1− k)

∫
Di

∫
Θ

µ(Θ̂) dµ(θ) dg(µ)

= k

∫
Do

µ(Θ̂) db(µ) + (1− k)

∫
Di

µ(Θ̂) dg(µ).

Let us see that the above computation implies both that (ξ, σ, π) satisfies the Bayesian

property (making (ξ, σ, α, π) a χ-equilibrium) and that its induced belief distribution

is p. First, observe that∫
Θ

∫
M̂

π(Θ̂|m) d[(1− χ)σ + χξ](m|·) dµ0

= k

∫
Do

µ(Θ̂) db(µ) + (1− k)

∫
Di

µ(Θ̂) dg(µ)

= k

∫
Θ̂

ηb(Do|·) dβ + (1− k)

∫
Θ̂

ηg(Di|·) dγ

=

∫
Θ̂

ηb(Do|·) d[kβ] +

∫
Θ̂

ηg(Di|·) d[µ0 − kβ]

=

∫
Θ̂

[
k dβ

dµ0
ηb(Do|·) +

(
1− k dβ

dµ0

)
ηg(Di|·)

]
dµ0

=

∫
Θ̂

[(1− χ)σ + χξ](M̂ |·) dµ0,

verifying the Bayesian property. Second, for any Borel D ⊆ ∆Θ, we can specialize

to the case of Do = Di = D and Θ̂ = Θ, showing the equilibrium probability of the

receiver posterior belief belonging to D is exactly∫
Θ

[(1− χ)σ + χξ]({i, o} ×D|·) dµ0 = k

∫
D

1 db+ (1− k)

∫
D

1 dg = p(D).

Finally, the expected sender payoff conditional on reporting not being influenced is
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given by:∫
Θ

∫
M

uS (α(m)) dξ(m|·) d
[

χ
χ(µ0)

µ0

]
=

∫
Θ

[(
1− k

χ
dβ
dµ0

)∫
∆Θ

uS (α(i, µ)) dηg(µ|·) + k
χ

dβ
dµ0

∫
∆Θ

uS (α(o, µ)) dηb(µ|·)
]

d
[

χ
χ(µ0)

µ0

]
=

∫
Θ

[(
1− k

χ
dβ
dµ0

)∫
∆Θ

si dηg(µ|·) + k
χ

dβ
dµ0

∫
supp(b)

φ(µ) dηb(µ|·)
]

d
[

χ
χ(µ0)

µ0

]
= si + k

χ(µ0)

∫
Θ

[
−si +

∫
supp(b)

φ(µ) dηb(µ|θ)
]

dβ(θ)

=
[
1− k

χ(µ0)

]
si + k

χ(µ0)

∫
∆Θ

∫
Θ

φ(µ) dµ(θ) db(µ)

= (1−k)−[1−χ(µ0)]
χ(µ0)

si + k
χ(µ0)

∫
supp(b)

φ db

= so,

as required.

A.1.2 Proof of Theorem 1

We begin with a simple technical lemma on the geometry of concave envelopes and the

belief distributions that attain them.

Lemma 2. If f : ∆Θ → R is upper semicontinuous, f̂ is f ’s concave envelope, β ∈
∆Θ, and b ∈ R(β) has

∫
f db = f̂(β), then b{µ ∈ ∆Θ : f̂ |co{β,µ} affine} = 1.

Proof. First, observe that every concave, non-affine function ϕ : [0, 1]→ R has ϕ(z) >

zϕ(1) + (1 − z)ϕ(0) for every z ∈ (0, 1). Hence, it suffices to show f̂
(

1
2
β + 1

2
µ
)

=
1
2
f̂(β) + 1

2
f̂(µ) a.s.-b(µ). Equivalently, because concavity of f̂ implies 1

2
f̂(β) + 1

2
f̂(µ)−

f̂
(

1
2
β + 1

2
µ
)
≤ 0 for every µ ∈ ∆Θ, we need only show

∫ [
1
2
f̂(β) + 1

2
f̂(µ)

]
db(µ) and∫

f
(

1
2
β + 1

2
µ
)

db(µ) coincide. To show this identity, observe that (as f̂ is concave,

upper semicontinuous, and everywhere above f)

f̂(β) =

∫ [
1
2
f̂(β) + 1

2
f
]

db ≤
∫ [

1
2
f̂(β) + 1

2
f̂
]

db

≤
∫
f̂
(

1
2
β + 1

2
µ
)

db(µ) ≤ f̂

(∫ [
1
2
β + 1

2
µ
]

db(µ)

)
= f̂(β).

Hence, all of the above expressions are equal, delivering the lemma.
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Before proceeding to the proof of Theorem 1, we prove a useful lemma about the

theorem’s auxiliary program. In short, the lemma shows that a relaxation built into

this program—that S can be held to payoff v̄(γ) even at beliefs at which every R best

response gives S a higher payoff—is payoff-irrelevant at an optimum.

Lemma 3. If (β, γ, k) solve program (12) and have v̂∧γ(β) < v̄(γ), and b ∈ R(β)

has
∫
v∧γ db = v̂∧γ(β), then v∧γ(µ) ∈ V (µ) for every µ ∈ supp(b). In particular,

b{minV ≤ v̄(γ)} = 1.

Proof. Given the definition of v∧γ, and given that V is nonempty-compact-convex-

valued, it suffices to show w(µ) ≤ v̄(γ) for µ ∈ supp(b), where w := minV . Then,

because V is upper hemicontinuous, it suffices to show b{w ≤ v̄(γ)} = 1. To that end,

define D :=
{
µ ∈ ∆Θ : v̂∧γ|co{β,µ} affine

}
. Applying Lemma 2 to v∧γ implies b(D) = 1,

so the lemma will follow if we can show w|D ≤ v̄(γ).

Let us establish that every µ ∈ D has w(µ) ≤ v̄(γ). The result is obvious if

v(µ) < v̄(γ), so let us focus on the case that v(µ) ≥ v̄(γ). For such µ, note that every

proper convex combination µ′ of β and µ has v(µ′) < v̄(γ)—for otherwise v̂∧γ(β) <

v̂∧γ(µ
′) = v̂∧γ(µ), violating the definition of D 3 µ. It follows that µ is in the closure of

{v ≤ v̄(γ)} ⊆ {w ≤ v̄(γ)}. Lower semicontinuity of w then implies w(µ) ≤ v̄(γ).

We now prove our main theorem. In fact, we prove its generalization to the setting

of section 6.3: An S-optimal χ-equilibrium exists, giving S payoff v∗χ(µ0).

Proof. By Lemma 1, the supremum sender value over all χ-equilibrium outcomes is

ṽ∗χ(µ0) := sup
b,g∈∆∆Θ, k∈[0,1], so,si∈R

{
χ(µ0)so + [1− χ(µ0)]si

}
s.t. kb+ (1− k)g ∈ R(µ0), (1− k)

∫
∆Θ

µ dg(µ) ≥ (1− χ)µ0,

g{V 3 si} = b{minV ≤ si} = 1,

so ∈
(

1− k
χ(µ0)

)
si + k

χ(µ0)

∫
supp(b)

si ∧ V db.

Given any feasible (b, g, k, so, si) in the above program, replacing the associated

measurable selector of si ∧ V |supp(b) with the weakly higher function si ∧ v|supp(b), and

raising so to
(

1− k
χ(µ0)

)
si + k

χ(µ0)

∫
supp(b)

si ∧ v db, weakly raises the objective and
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preserve all constraints. Therefore,

ṽ∗χ(µ0) = sup
b,g∈∆∆Θ, k∈[0,1], si∈R

{
(1− k)si + k

∫
supp(b)

si ∧ v db

}
s.t. kb+ (1− k)g ∈ R(µ0), (1− k)

∫
∆Θ

µ dg(µ) ≥ (1− χ)µ0,

g{V 3 si} = b{minV ≤ si} = 1.

Given any feasible (b, g, k, si) in the latter program, replacing (g, si) with any (g∗, s∗i )

such that
∫

∆Θ
µ dg∗(µ) =

∫
∆Θ

µ dg(µ), g∗{V 3 s∗i } = 1, and s∗i ≥ si will preserve all

constraints and weakly raise the objective. Moreover, Lipnowski and Ravid (2020,

Lemma 1 and Theorem 2) tell us that any γ ∈ ∆Θ has maxg∈R(γ),si∈R: g{V 3si}=1 si =

v̄(γ).38 Therefore,

ṽ∗χ(µ0) = sup
β,γ∈∆Θ, k∈[0,1], b∈R(β)

{
(1− k)v̄(γ) + k

∫
∆Θ

v∧γ db

}
s.t. kβ + (1− k)γ = µ0, (1− k)γ ≥ (1− χ)µ0,

b{minV ≤ v̄(γ)} = 1.

Trivially, the program (12) that defines v∗χ(µ0) is a relaxation of the above program;

that is, for every feasible (β, γ, k, b) for the above program, (β, γ, k) is feasible in (12)

and generates a weakly higher objective there; that is, ṽ∗χ(µ0) ≤ v∗χ(µ0). We now prove

the opposite inequality also holds, thereby completing the theorem’s proof. Notice the

program (12) has an upper semicontinuous objective and compact constraint set, and

so admits some solution (β, γ, k). We now argue some (β̃, γ̃, k̃, b) exists that is feasible

for the above program, and such that

(1− k̃)v̄(γ̃) + k̃

∫
v∧γ̃ db ≥ kv̂∧γ(β) + (1− k)v̄(γ),

and so ṽ∗χ(µ0) ≥ v∗χ(µ0). If v̂∧γ(β) < v̄(γ), then Lemma 3 delivers b such that (β, γ, k, b)

is as desired. Otherwise, v̂∧γ(β) = v̄(γ), and so quasiconcavity of v̄ implies v̄(µ0) ≥
kv̂∧γ(β) + (1− k)v̄(γ)—meaning (µ0, µ0, 0, δµ0) is as desired. The theorem follows.

38Note that, g{V 3 si} = 1 implies si ∈
⋂
µ∈supp(g) V (µ) because V is upper hemicontinuous.
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A.1.3 Consequences of Lemma 1 and Theorem 1

In this subsection we record some properties of the χ-equilibrium payoff set and S’s

favorite χ-equilibrium payoff. We use these properties in the subsequent analysis.

Corollary 1. The set of χ-equilibrium outcomes (p, so, si) at prior µ0 is a compact-

valued, upper hemicontinuous correspondence of (µ0, χ) on ∆Θ× [0, 1].

Proof. Let YG be the graph of V and YB be the graph of [minV,maxuS(A)], both

compact because V is a Kakutani correspondence.

Let X be the set of all (µ0, p, g, b, χ, k, so, si) ∈ (∆Θ)×(∆∆Θ)3×[0, 1]2×[co uS(A)]2

such that:

• kb+ (1− k)g = p;

• (1− χ)
∫

∆Θ
µ dg(µ) + χ

∫
∆Θ

µ db(µ) = µ0;

• (1− k)
∫

∆Θ
µ dg(µ) ≥ (1− χ)µ0;

• g ⊗ δsi ∈ ∆(YG) and b⊗ δsi ∈ ∆(YB);

• k
∫

∆Θ
minV db ≤ (k − χ) si + χso ≤ k

∫
∆Θ

si ∧ v db.

As an intersection of compact sets, X is itself compact. By Lemma 1, the equilibrium

outcome correspondence has a graph which is a projection ofX, and so is itself compact.

Therefore, it is compact-valued and upper hemicontinuous.

Corollary 2. For any µ0 ∈ ∆Θ, the map

{χ : Θ→ [0, 1] : χ measurable} → R
χ 7→ v∗χ(µ0)

is weakly increasing.

Proof. This result follows immediately from Theorem 1 (the general version, with state-

dependent credibility, proven above) because increasing credibility weakly expands the

constraint set.
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Corollary 3. For any µ0 ∈ ∆Θ, the map

[0, 1]→ R
χ 7→ v∗χ(µ0)

is weakly increasing and right-continuous.

Proof. That it is weakly increasing is a specialization of Corollary 2. That it is upper

semicontinuous (and so, since nondecreasing, it is right-continuous) follows directly

from Corollary 1.

Corollary 4. For any χ ∈ [0, 1], the map v∗χ : ∆Θ→ R is upper semicontinuous.

Proof. This result is immediate from Corollary 1.

A.2 Productive Mistrust: Proof of Proposition 1

In this section, we prove Proposition 1 as stated in the main text. Whereas this propo-

sition is stated for state-independent credibility, it immediately implies the following

result for the case in which credibility is allowed to depend on the state:

Corollary 5. Consider a finite and generic model in which S is not a two-faced SOB.

Then, a full support prior and state-dependent credibility levels χ′ < χ exist such

that every S-optimal χ′ equilibrium is strictly better for R than every S-optimal χ-

equilibrium.

As explained in the main text, one can divide the proof of Proposition 1 into two

parts. The first part proves the proposition for the case in which Θ is binary. The

second part uses a continuity argument to extend the binary-state result to any finite-

state environment.

A.2.1 Productive Mistrust with Binary States

We first verify our sufficient conditions for productive mistrust to occur in the binary-

state world in the lemma below. In addition to being a special case of the proposition,

it will also be an important lemma for proving the more general result.

To this end, it is useful to introduce a more detailed language for our key SOB

condition. Given a prior µ ∈ ∆Θ, say S is an SOB at µ if every p ∈ R(µ) is

outperformed by an SOB policy p′ ∈ R(µ).
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Lemma 4. Suppose |Θ| = 2, the model is finite and generic, and a full-support belief

µ ∈ ∆Θ exists such that the sender is not an SOB at µ. Then, a full-support prior µ0

and credibility levels χ′ < χ exist such that every S-optimal χ′-equilibrium is both strictly

better for R and more Blackwell-informative than every S-optimal χ-equilibrium.

Moreover, some full-support belief µ+ exists such that any solution (β, γ, k) to the

program in Theorem 1 at prior µ0 and credibility level in {χ, χ′} has γ = µ+.

Proof. First, notice that the genericity assumption delivers full-support µ′ such that

V (µ′) = {max v (∆Θ)}.
Name our binary-state space {0, 1} and identify ∆Θ = [0, 1] in the obvious way.

The function v : [0, 1] → R is upper semicontinuous and piecewise constant, which

implies that its concave envelope v∗1 is piecewise affine. That is, some n ∈ N and

{µi}ni=0 exist such that 0 = µ0 ≤ · · · ≤ µn = 1 and v∗1|[µi−1,µi] is affine for every

i ∈ {1, . . . , n}. Taking n to be minimal, we can assume that µ0 < · · · < µn and the

slope of v∗1|[µi−1,µi] is strictly decreasing in i. Therefore, some i0, i1 ∈ {0, . . . , n} exist

such that i1 ∈ {i0, i0 + 1} and argmaxµ̃∈[0,1] v
∗
1(µ̃) = [µi0 , µi1 ]. That the sender is not

an SOB at µ implies that i0 > 1 or i1 < n− 1. Without loss of generality, say i0 > 1.

Now let µ− := µi0−1 and µ+ := µi0 .

We now find a µ0 ∈ (µ−, µ+) such that v̄|[µ0,µ+) is constant and lies strictly below

v∗1|[µ0,µ+). To do so, recall the model is finite, and so v̄ has finite range and is piecewise

constant. It follows some ε > 0 exists such that v̄ is constant on (µ+ − ε, µ+). Since

v∗1 : [0, 1] → R is concave and upper semicontinuous, it is in fact continuous, and so

admits an ε̃ ∈ (0, µ+) such that every µ̃ ∈ (µ+ − ε̃, µ+) has

v∗1(µ̃) > max [v̄([0, 1]) \ {max v̄([0, 1])}] ≥ v̄(µ̃),

where the last inequality follows from v̄|[0,µ+) ≤ v∗1|[0,µ+) < v∗1(µ+). Thus, the desired

properties are satisfied by any µ0 ∈ (max{µ−, µ+− ε, µ+− ε̃}, µ+). Let µ0 be one such

belief.

To summarize, the beliefs µ−, µ0, µ+ ∈ [0, 1] are such that: 0 < µ− < µ0 < µ+;

v̂∧µ+ = v̂ = v∗1 is affine on [µ−, µ+] and on no larger interval; v̂∧µ+ is strictly increasing

on [0, µ+]; v∗0 = v̄ is constant on [µ0, µ+).

Let χ ∈ [0, 1] be the smallest credibility level such that v∗χ(µ0) = v∗1(µ0), which

exists by Corollary 3. That v∗0(µ0) < v∗1(µ0) implies χ > 0. Notice µ+ has full support,

because 0 ≤ µ− < µ+ ≤ µ′ < 1. It follows that χ < 1. Consider now the following

claim.
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Claim: Given χ′ ∈ [0, χ], suppose that

(β′, γ′, k′) ∈ argmax(β,γ,k)∈[0,1]3

{
kv̂∧γ(β) + (1− k)v̄(γ)

}
(13)

s.t. kβ + (1− k)γ = µ0, (1− k)(γ, 1− γ) ≥ (1− χ′)(µ0, 1− µ0),

and the objective attains a value strictly higher than v̄(µ0). Then:

• γ′ = µ+ and β′ ≤ µ−.

• If b′ ∈ R(β′) and g′ ∈ R(γ′) are such that p′ = k′b′+ (1−k′)g′ is the information

policy of an S-optimal χ′-equilibrium, then b′[0, µ−] = g′{µ+} = 1.

We now prove the claim.

Suppose first γ′ > µ+ for a contradiction, and let k′′ > 0 be the unique solution to

k′′β′ + (1− k′′)µ+ = µ0. Observe k′′ < k′, and so

(1− k′′)(µ+, 1− µ+) = (µ0, 1− µ0)− k′′(β′, 1− β′)
≥ (µ0, 1− µ0)− k′(β′, 1− β′)
= (1− k′)(γ′, 1− γ′) ≥ (1− χ′)(µ0, 1− µ0).

Because

k′′v̂∧µ+(β′) + (1− k′′)v̄(µ+) ≥ k′′v̂∧γ′(β
′) + (1− k′′)v̄(γ′) > k′v̂∧γ′(β

′) + (1− k′)v̄(γ′),

(β′, µ+, k
′′) is a feasible solution that would strictly outperform (β′, γ′, k′), contradicting

optimality of (β′, γ′, k′). It follows γ′ ≤ µ+.

Next, notice that v̄—as a weakly quasiconcave function which is nondecreasing and

nonconstant over [µ0, µ+]—is nondecreasing over [0, µ+]. Moreover, limµ↗µ+ v̄(µ) =

v̄(µ0) < v̄(µ+). Therefore, if γ′ < µ+, it would follow that k′v̂∧γ′(β
′) + (1− k′)v̄(γ′) ≤

v̄(γ′) ≤ v̄(µ0). Given the hypothesis that (β′, γ′, k′) strictly outperforms v̄(µ0), it

follows that γ′ = µ+. A direct implication is that

(β′, k′) ∈ argmax(β,k)∈[0,1]2

{
kv̂∧µ+(β) + (1− k) max v[0, µ+]

}
s.t. kβ + (1− k)µ+ = µ0, (1− k)(1− µ+) ≥ (1− χ′)(1− µ0).

Let us now see why we cannot have β′ ∈ (µ−, µ0). As v̂∧µ+ is affine on [µ+, µ−],

replacing such (k′, β′) with (k, µ−) which satisfies kµ− + (1 − k)µ+ = µ0 necessarily
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has (1− k)(µ+, 1− µ+)� (1−χ′)(µ0, 1− µ0). This would contradict minimality of χ.

Therefore, β′ ≤ µ−.

We now prove the second bullet. First, every µ < µ+ satisfies v(µ) ≤ v∗1(µ) <

v∗1(µ+) = v(µ+). This property implies that δµ+ is the unique g ∈ R(µ+) with

inf v(suppg) ≥ v(µ+). Therefore, g′ = δµ+ . Second, the measure b′ ∈ R(β′) can be

expressed as b′ = (1 − λ)bL + λbR for bL ∈ ∆[0, µ−], bR ∈ ∆(µ−, 1], and λ ∈ [0, 1).

Notice that (µ−, v(µ−)) is an extreme point of the subgraph of v∗1, and therefore

an extreme point of the subgraph of v̂∧µ+ . Taking the unique λ̂ ∈ [0, λ] such that

b̂ := (1 − λ̂)bL + λ̂δµ− ∈ R(β′), it follows that
∫

[0,1]
v̂∧µ+ db̂ ≥

∫
[0,1]

v̂∧µ+ db′, strictly so

if λ̂ < λ. But λ̂ < λ necessarily if λ > 0, since
∫

[0,1]
µ dβR(µ) > µ−. Optimality of b′

then implies that λ = 0, i.e. b′[0, µ−] = 1. This observation completes the proof of the

claim.

With the claim in hand, we can now prove the lemma. The claim implies that, for

credibility level χ, any solution (β∗, γ∗, k∗) of the program (13) is such that γ∗ = µ+,

k∗ = µ+−µ0

µ+−β∗ , and β∗ solves

max
β∈[0,µ−]

{
µ+ − µ0

µ+ − β
v̂∧µ+(β) +

µ0 − β
µ+ − β

v̄(µ+)

}
.

Note that because v̄(µ+) = v(µ+) = v̂∧µ+(µ+), any β ∈ [0, µ−] has

µ+ − µ0

µ+ − β
v̂∧µ+(β) +

µ0 − β
µ+ − β

v̂∧µ+(µ+) ≤ v̂∧µ+

(
µ+ − µ0

µ+ − β
β +

µ0 − β
µ+ − β

µ+

)
= v̂∧µ+(µ0)

by concavity of v̂∧µ+ . Moreover, the inequality is strict for β < µ− but holds with

equality for β = µ−, since v̂∧µ+ is affine on [µ−, µ+] and on no larger interval. Hence,

the unique solution to (13) is (µ−, µ+, k
∗), where k∗µ− + (1 − k∗)µ+ = µ0. Moreover,

the minimality property defining χ implies that (1− k∗)(1− µ+) = (1− χ)(1− µ0).

Given χ′ < χ sufficiently close to χ, one can verify directly that (β′, µ+, k
′) is

feasible, where

k′ := 1− 1−χ′
1−χ (1− k∗) and β′ := 1

k′
[µ0 − (1− k′)µ+] .

As v̂∧µ+ is a continuous function, it follows that v∗χ′(µ0) ↗ v∗χ(µ0) as χ′ ↗ χ. In

particular, v∗χ′(µ0) > v∗0(µ0) for χ′ < χ sufficiently close to χ. Fix such a χ′.

Let p′ be any S-optimal χ′-equilibrium information policy. Appealing to the claim,
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some b′ ∈ R(β′) ∩ ∆[0, µ−] exists such that p′ ∈ co{b′, δµ+}. Therefore, p′ is weakly

more Blackwell-informative than p∗. Finally, as (1 − k∗)(1 − µ+) = (1 − χ)(1 − µ0)

and χ′ < χ, feasibility of p′ tells us that p′ 6= p∗. Therefore (the Blackwell order being

antisymmetric), p′ is strictly more informative than p∗.

All that remains is to show that the receiver’s optimal payoff is strictly higher given

p′ than given p∗. To that end, fix sender-preferred receiver best responses a− and a+

to µ− and µ+, respectively. As the receiver’s optimal value given p∗ is attainable using

only actions {a−, a+}, and the same value is feasible given only information p′ and

using only actions {a−, a+}, it suffices to show that there are beliefs in the support

of p′ to which neither of {a−, a+} is a receiver best response. But, every µ ∈ [0, µ−)

satisfies

v(µ) ≤ v̄(µ) < v̄(µ−) = min{v̄(µ−), v̄(µ+)};

that is, maxuS (argmaxa∈A uR(a, µ)) < min{uS(a−), uS(a+)}. The result follows.

A.2.2 Productive Mistrust with Many States: Proof of Proposition 1

Given Lemma 4, we need only prove the proposition for the case of |Θ| > 2, which

we do below. The proof intuition is as follows. Using the binary-state logic, one can

always obtain a binary-support prior µ∞0 and credibility levels χ′ < χ such that R

strictly prefers every S-optimal χ′-equilibrium to every S-optimal χ-equilibrium. We

then find an interior direction through which to approach µ∞0 , while keeping S’s optimal

equilibrium value under both credibility levels continuous. Genericity ensures that such

a direction exists despite v̄ being discontinuous. The continuity in S’s value from the

identified direction then ensures upper hemicontinuity of S’s optimal equilibrium policy

set; that is, the limit of every sequence of S-optimal equilibrium policies from said

direction must also be optimal under µ∞0 . Now, if the proposition were false, one could

construct a convergent sequence of S-optimal equilibrium policies from said direction

for each credibility level, {pχn, pχ
′
n }n≥0, such that R would weakly prefer pχn to pχ

′
n . As

R’s payoffs are continuous, R being weakly better off under χ than under χ′ along the

sequences would imply the same at the sequences’ limits. Notice, though, that such

limits must be S-optimal for the prior µ∞0 by the choice of direction, meaning that

productive mistrust fails at µ∞0 ; that is, we have a contradiction. Below, we proceed

with the formal proof.

Proof. Suppose some prior with binary support Θ2 = {θ1, θ2} exists at which S is not
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an SOB. Let s̄ := max v (∆Θ2), and define the R value function vR : ∆∆Θ → R via

vR(p) :=
∫

∆Θ
maxa∈A uR(a, µ) dp(µ). Lemma 4 delivers some µ∞0 ∈ ∆Θ with support

Θ2 and credibility levels χ′′ < χ′ such that every S-optimal χ′′-equilibrium is strictly

better for R than every S-optimal χ′-equilibrium. Consider the following claim.

Claim: Some sequence {µn0} of full-support priors exists that converges to µ∞0 with

lim inf
n→∞

v∗χ(µn0 ) ≥ v∗χ(µ∞0 ) for χ ∈ {χ′, χ′′}.

Before proving the claim, let us argue that it implies the proposition. Given the

claim, assume for contradiction that: for every n ∈ N, prior µn0 admits some S-optimal

χ′-equilibrium and χ′′-equilibrium, Ψ′n = (p′n, s
′
in, s

′
on) and Ψ′′n = (p′′n, s

′′
i n, s

′′
on), respec-

tively, such that vR(p′n) ≥ vR(p′′n). Dropping to a subsequence if necessary, we may

assume by compactness that (Ψ′n)n and (Ψ′′n)n converge (in ∆∆Θ × [co uS(A)]2) to

some Ψ′ = (p′, s′i, s
′
o) and Ψ′′ = (p′′, s′′i , s

′′
o) respectively. By Corollary 1, for every

credibility level χ, the set of χ-equilibria is an upper hemicontinuous correspondence

of the prior. Therefore, Ψ′ and Ψ′′ are χ′- and χ′′-equilibria, respectively, at prior µ∞0 .

Continuity of vR (by Berge’s theorem) then implies that vR(p′) ≥ vR(p′′). Finally,

by the claim, it must be that Ψ′ and Ψ′′ are S-optimal χ′- and χ′′-equilibria, respec-

tively, contradicting the definition of µ∞0 . Therefore, some n ∈ N exists such that the

full-support prior µn0 is as required for the proposition.

So all that remains is to prove the claim. To do this, we construct the desired

sequence.

First, Lemma 4 delivers some γ∞ ∈ ∆Θ with support Θ2 such that v̄(γ∞) = s̄ and,

for χ ∈ {χ′, χ′′}, any solution (β, γ, k) to the program in Theorem 1 at prior µ∞0 and

credibility level χ has γ = γ∞.

Let us now show that there exists a closed convex set D ⊆ ∆Θ which contains

γ∞, has nonempty interior, and satisfies v̄|D = s̄. Notice, first, that the gener-

icity assumption delivers µ′ with support Θ2 such that V (µ′) = {s̄}. Then, for

any n ∈ N, let Bn ⊆ ∆Θ be the closed ball (say with respect to the Euclidean

metric) of radius 1
n

around µ′, and let Dn := co [{γ∞} ∪Bn]. As v|∆Θ2 ≤ s̄ and

v̄ = maxp∈R(·) inf v(supp(p)) (see Lipnowski and Ravid 2020, Theorem 2), it follows

v̄|∆Θ2 ≤ s̄ as well. As V is upper hemicontinuous, the hypothesis on µ′ ensures that

v̄|Bn ≥ v|Bn = s̄ for sufficiently large n ∈ N; quasiconcavity then tells us v̄|Dn ≥ s̄.

Assume now, for a contradiction, that every n ∈ N has v̄|Dn � s̄. That is, each n ∈ N
admits some λn ∈ [0, 1] and µ′n ∈ Bn such that v̄ ((1− λn)γ∞ + λnµ

′
n) > s̄. In this
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case, each n ∈ N has v̄ ((1− λn)γ∞ + λnµ
′
n) ≥ ŝ := min [v̄(∆Θ) ∩ (s̄,∞)] (observe ŝ is

well-defined because |v̄(∆Θ)| <∞ due to the model being finite). Dropping to a subse-

quence, we get a strictly increasing sequence (n`)
∞
`=1 of natural numbers such that (since

[0, 1] is compact) λn`
`→∞−−−→ λ ∈ [0, 1] and v̄

(
(1− λn`)γ∞ + λn`µ

′
n`

)
≥ ŝ for every ` ∈ N.

As v̄ is upper semicontinuous, this would imply that v̄ ((1− λ)γ∞ + λµ′) ≥ ŝ > s̄,

contradicting the definition of s̄ and µ′. Therefore, some D ∈ {Dn`}∞`=1 is as desired.

In what follows, let γ1 ∈ D be some interior element with full support. Then, for

each n ∈ N, define µn0 := n−1
n
µ∞0 + 1

n
γ1. We show that the sequence (µn0 )∞n=1—a sequence

of full-support priors converging to µ∞0 —is as desired. To that end, fix χ ∈ {χ′, χ′′}
and some (β, k) ∈ ∆Θ× [0, 1] such that (β, γ∞, k) solves the program in Theorem 1 at

prior µ∞0 . Then, for any n ∈ N, let:

εn := 1
n−(n−1)k

∈ (0, 1],

γn := (1− εn)γ∞ + εnγ1 ∈ D,
kn := n−1

n
k ∈ [0, k).

Given these definitions,

(1− kn)γn = 1
n

[n− (n− 1)k] γn

= 1
n
{[n− (n− 1)k − 1] γ∞ + γ1}

= n−1
n

(1− k)γ∞ + 1
n
γ1

≥ n−1
n

(1− χ)µ∞0 + 1
n
γ1 ≥ (1− χ)µn0 ,

and

knβ + (1− kn)γn = n−1
n
kβ + n−1

n
(1− k)γ∞ + 1

n
γ1

= n−1
n
µ∞0 + 1

n
γ1 = µn0 .

Therefore, (β, γn, kn) is χ-feasible at prior µn0 . As a result,

v∗χ(µn0 ) ≥ knv̂∧γn(β) + (1− kn)v̄(γn)

= knv̂∧γ(β) + (1− kn)v̄(γ) (since v̄(γn) = u)
n→∞−−−→ kv̂∧γ(β) + (1− k)v̄(γ) = v∗χ(µ∞0 ).

This proves the claim, and so too the proposition.
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A.3 Collapse of Trust: Proof of Proposition 2

Proof. Let us establish a four-way equivalence between the three conditions in the

proposition’s statement and the following state-dependent-credibility analogue of con-

dition (i):

(i)′ Every χ ∈ [0, 1]Θ and full-support prior µ0 have limχ′↗χ v
∗
χ′(µ0) = v∗χ(µ0), where

convergence of χ′(·)→ χ(·) is in the Euclidean topology on RΘ.

Three of four implications are easy given Corollary 2. First, (i)′ trivially implies (i).

Second ((iii) implies (ii)), if there is no conflict, then Lipnowski and Ravid (2020,

Lemma 1) tells us that there is a 0-equilibrium with full information that generates

sender value max v(∆Θ) ≥ v∗1; in particular, v∗0 = v∗1. Third ((ii) implies (i)′), if

v∗0 = v∗1, then Corollary 2 implies v∗χ is constant in χ, ruling out a collapse of trust

(even under state-dependent credibility). Below we show that any conflict whatsoever

implies a collapse of trust, that is, a failure of (iii) implies a failure of (i).

Suppose there is conflict; that is, minθ∈Θ v(δθ) < max v(∆Θ) or, equivalently,

minθ∈Θ v̄(δθ) < max v̄(∆Θ). Taking a positive affine transformation of uS, we may as-

sume without loss that min v̄(∆Θ) = 0 and (since v̄(∆Θ) ⊆ uS(A) is finite) min[v̄(∆Θ)\
{0}] = 1. The set D := arg minµ∈∆Θ v̄(µ) = v̄−1(−∞, 1) is then open and nonempty.

We can then consider some full-support prior µ0 ∈ D. For any scalar χ̂ ∈ [0, 1], let

Γ(χ̂) := {(β, γ, k) ∈ ∆Θ× (∆Θ \D)× [0, 1] : kβ + (1− k)γ = µ0, (1− k)γ ≥ (1− χ̂)µ0} ,

and K(χ̂) be its projection onto its last coordinate. As the correspondence Γ is upper

hemicontinuous and increasing (with respect to set containment), K inherits the same

properties. Next, notice that K(1) 3 1 (as v̄ is nonconstant by the hypothesis that a

conflict exists, so that ∆Θ 6= D) and K(0) = ∅ (as µ0 ∈ D). Therefore, χ := min{χ̂ ∈
[0, 1] : K(χ̂) 6= ∅} exists and belongs to (0, 1].

Given any scalar χ′ ∈ [0, χ), it must be that K(χ′) = ∅. That is, if β, γ ∈ ∆Θ and

k ∈ [0, 1] with kβ+ (1− k)γ = µ0 and (1− k)γ ≥ (1−χ′)µ0, then γ ∈ D. By Theorem

1, then, v∗χ′(µ0) = v̄(µ0) = 0. There is, however, some k ∈ K(χ). By Theorem 1 and

the definition of Γ, there is therefore a χ-equilibrium generating ex-ante sender payoff

of at least k · 0 + (1− k) · 1 = (1− k) ≥ (1− χ). If χ < 1, a collapse of trust occurs at

credibility level χ.

The only remaining case is the case that χ = 1. In this case, some ε ∈ (0, 1) and
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µ ∈ ∆Θ \D exist such that εµ ≤ µ0. Then

v∗χ(µ0) ≥ εv̄(µ) + (1− ε)v̄
(
µ0−εµ

1−ε

)
≥ ε.

So again, a collapse of trust occurs at credibility level χ.

A.4 Robustness: Proof of Proposition 3

Before proving the proposition, let us briefly observe that the proposition as stated is

equivalent to the analogous statement for state-dependent credibility. Indeed, given

Corollary 2, any prior µ0 and state-dependent credibility χ has v∗χ(µ0) ≤ v∗χ(µ0) ≤
v∗1(µ0) for χ = minθ∈Θχ(θ) ∈ [0, 1]. It follows immediately that limχ↗1 v

∗
χ(µ0) = v∗1(µ0)

if and only if limχ↗1 v
∗
χ(µ0) = v∗1(µ0), where convergence of χ→ 1 is in the Euclidean

topology on RΘ. That is, the stronger property of robustness of the commitment value

to small state-dependent departures from perfect credibility is equivalent to that stated

in the proposition.

We now proceed to proving the proposition for the case of state-independent cred-

ibility.

Proof. By Lipnowski and Ravid (2020, Lemma 1 and Theorem 2), S gets the benefit

of the doubt (i.e. every θ ∈ Θ is in the support of some member of argmaxµ∈∆Θ v(µ))

if and only if there is some full-support γ ∈ ∆Θ such that v̄(γ) = max v(∆Θ).

First, given a full-support prior µ0, suppose γ ∈ ∆Θ is full-support with v̄(γ) =

max v(∆Θ). It follows immediately that v̂∧γ = v̂ = v∗1. Let r0 := minθ∈Θ
µ0{θ}
γ{θ} ∈ (0,∞)
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and r1 := maxθ∈Θ
µ0{θ}
γ{θ} ∈ [r0,∞). Then Theorem 1 tells us that, for χ ∈

[
r1−r0
r1

, 1
)

:

v∗χ(µ0) ≥ sup
β∈∆Θ, k∈[0,1]

{
kv∗1(β) + (1− k)v(γ)

}
s.t. kβ + (1− k)γ = µ0, (1− k)γ ≥ (1− χ)µ0

= sup
k∈[0,1]

{
kv∗1

(
µ0−(1−k)γ

k

)
+ (1− k)v(γ)

}
s.t. (1− χ)µ0 ≤ (1− k)γ ≤ µ0

≥ sup
k∈[0,1]

{
kv∗1

(
µ0−(1−k)γ

k

)
+ (1− k)v(γ)

}
s.t. (1− χ)r1 ≤ (1− k) ≤ r0

≥ sup
k∈[0,1]

{
kv∗1

(
µ0−(1−k)γ

k

)
+ (1− k)v(γ)

}
s.t. (1− χ)r1 = (1− k)

= [1− (1− χ)r1] v∗1

(
µ0−(1−χ)r1γ

1−(1−χ)r1

)
+ (1− χ)r1v(γ).

But notice that v∗1, being a concave function on a finite-dimensional space, is con-

tinuous on the interior of its domain. Therefore, v∗1

(
µ0−(1−χ)r1γ

1−(1−χ)r1

)
→ v∗1(µ0) as χ → 1,

implying lim infχ↗1 v
∗
χ(µ0) ≥ v∗1(µ0). Finally, monotonicity of χ 7→ v∗χ(µ0) implies

v∗χ(µ0)→ v∗1(µ0) as χ→ 1. That is, persuasion is robust to limited commitment.

Conversely, suppose that S does not get the benefit of the doubt (which of course

implies v is non-constant). Taking an affine transformation of uS, we may assume

without loss that max v(∆Θ) = 1 and (since v(∆Θ) ⊆ uS(A) is finite) max[v̄(∆Θ) \
{1}] = 0. Fix any full-support prior µ0, and consider any credibility level χ ∈ [0, 1).

For any β, γ ∈ ∆Θ, k ∈ [0, 1] with kβ + (1− k)γ = µ0 and (1− k)γ ≥ (1− χ)µ0, that

S does not get the benefit of the doubt implies (say by Lipnowski and Ravid (2020,

Theorem 1)) that v̄(γ) ≤ 0, and therefore that kv̂∧γ(β) + (1− k)v(γ) ≤ 0. Theorem 1

then implies that v∗χ(µ0) ≤ 0.

Fix some full-support µ1 ∈ ∆Θ and some γ ∈ ∆Θ with v(γ) = 1. For any ε ∈ (0, 1),

the prior µε := (1− ε)γ + εµ1 has full support and satisfies

v∗1(µε) ≥ (1− ε)v(γ) + εv(µ1) ≥ (1− ε) + ε ·min v(∆Θ).

For sufficiently small ε, then, v∗1(µε) > 0. Persuasion is therefore not robust to limited

22



commitment at prior µε.

A.5 Persuading the Public: Proofs from section 5

In this section, our approach is similar to Appendix A.1: At a minimal notational

cost, we prove all results for a more general model of state-dependent credibility (sec-

tion 6.3). The corresponding definitions are generalized in a straightforward way: The

cutoff θ̄χ is the unique root of θ 7→
∫

(θ − θ̄χ)(1 − 1[0,θ̄χ)χ(θ)) dµ0(θ), and the poste-

rior mean distribution induced by the θ̄χ-upper-censorship pair is µ̄χ := 1[0,θ̄χ)χµ0 +(
1− χµ0[0, θ̄χ)

)
δθ̄χ .

A.5.1 Mathematical preliminaries

In this subsection, we document some notations and basic properties that are useful

for the present case of Θ = [0, 1], with the sender’s value depending only on the

receiver’s posterior expectation of the state. This environment is studied by Gentzkow

and Kamenica (2016) and others. Throughout the subsection, let θ0 := Eµ0 be the

prior mean; let

I := {I : R+ → R+ : I convex, I(0) = 0, I|[1,∞) affine};

let I ′ denote the right-hand-side derivative of I for any I ∈ I; and let

I(I) := {Î ∈ I : I ′(1) = Î ′(1), I(1) = Î(1), Î ≤ I}

for any I ∈ I.

As Fact 1 below clarifies, members of I are in natural bijective correspondence

with measures over [0, 1], where a member of I is derived from a measure by taking

the running integral of its cumulative distribution function. Moreover, working with

members of I, rather than directly in terms of the measures they represent, is partic-

ularly convenient for reasoning about information. Indeed, if I ∈ I represents a prior

distribution over the state, then Fact 2 implies members of the (geometrically inter-

pretable) set I(I) ⊆ I correspond exactly to distributions over posterior expectations

that can be implemented by some Blackwell experiment.

Fact 1. Let M be the set of finite positive Borel measures on Θ.
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1. For any η ∈ M, the function Iη : R+ → R+ given by θ̄ 7→
∫ θ̄

0
η[0, θ] dθ is a

member of I.

2. For any I ∈ I, the function I ′ is the CDF of some η ∈M such that Iη = I.

3. Any η ∈M has total mass I ′η(1) and, if η ∈ ∆Θ, has barycenter Eη = 1− Iη(1).

The proof of the above fact is immediate, invoking the fundamental theorem of

calculus for the second point and integration by parts for the third.

Fact 2. Given µ, µ̂ ∈ ∆Θ, the following are equivalent:

1. µ̂ = p ◦ E−1 for some p ∈ R(µ).

2. µ is a mean-preserving spread of µ̂.

3. Iµ̂ ∈ I(Iµ).

That the last two points are equivalent is immediate from the definition of a mean-

preserving spread. Equivalence between these conditions and the first is as described

in Gentzkow and Kamenica (2016). To apply their results, given µ ∈ ∆Θ, notice that:

• A convex function I : [0, 1] → R with I(θ) ≤ Iµ(θ) and I(θ) ≥ (θ − Eµ)+ for

every θ ∈ [0, 1] extends (by letting it take slope 1 on [1,∞)) to a member of

I(Iµ).

• Every element I ∈ I(Iµ) has, for each θ ∈ [0, 1],

I(θ)− (θ − Eµ) =

∫ 1

θ

[1− I ′(θ̃)] dθ̃ ≥ 0,

so that I(θ) ≥ (θ − Eµ)+ = max{Iµ(1)− I ′µ(1)(1− θ), 0}.

A.5.2 Characterizing S-optimal equilibrium

This section begins by constructing a class of perturbations to a given element of I.

Using these perturbations, we provide an elementary proof that upper-censorship is

an optimal persuasion policy in the one-dimensional mean-measurable model when

S’s objective is convex-concave. We then establish uniqueness of θ̄χ satisfying (the

state-dependent version of) (θ∗-IC) and characterize Iµ̄χ . We conclude by proving (the

state-dependent version of) Claim 1.
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Lemma 5. Suppose Ī ∈ I, I ∈ I(Ī), and ω ∈ [0, 1]. Then some θ∗ ∈ [0, ω], θ∗∗ ∈ [ω, 1],

and I∗ ∈ I(Ī) exist such that:

• I∗ = Ī on [0, θ∗], I∗ is affine on [θ∗, θ∗∗], and I∗
′
(θ) = 1 on [θ∗∗,∞);

• I∗ − I is nonnegative on [0, ω] and nonpositive on [ω,∞).

The proof of the lemma is constructive. While tedious to formally verify that the

construction is as desired, it is intuitive to picture. We illustrate in Figure 8. Given

the curves I and Ī, we wish to construct the curve I∗ ∈ I(Ī). In order to ensure

that I∗ has the required level and slope at θ = 1, we will construct it to lie above

the tangent line θ 7→ θ − θ0 of Ī at 1. Now, consider positively sloped lines through

the point (ω, I(ω)). Convexity of Ī ensures that some such line lies everywhere below

the graph of Ī, whence continuity delivers such a line of shallowest slope. This line

is necessarily tangent to Ī somewhere to the left of ω: this point will be our θ∗. The

same line intersects the tangent line θ 7→ θ − θ0 to the right of ω: this will be our θ∗∗.

Finally, we construct I∗ to coincide with upper bound function Ī to the left of θ∗, the

θ∗ tangent line on [θ∗, θ∗∗], and the 1 tangent line θ 7→ θ − θ0 to the right of θ∗∗.

Proof. Let Λ := {λ ∈ [0, I ′(ω)] : I(ω)−λ(ω−θ) ≤ Ī(θ) for all θ ∈ [0, ω]}. The set Λ is

closed because Ī is continuous, and it contains I ′(ω) because I is convex and below Ī.

So let λ := min Λ. Minimality of λ, together with the fact that the continuous function

θ 7→ I(ω) − λ(ω − θ) − Ī(θ) : [0, ω] → R attains a maximum, implies some θ∗ ∈ [0, ω]

has I(ω)− λ(ω − θ∗) = Ī(θ∗). We can then construct the function

I∗ : R+ → R+

θ 7→


Ī(θ) : 0 ≤ θ ≤ θ∗

I(ω)− λ(ω − θ) : θ∗ ≤ θ ≤ ω

max{I(ω) + λ(θ − ω), I(1)− I ′(1)(1− θ)} : ω ≤ θ.

Note, that I is convex implies I(ω)+λ(ω−ω) ≥ I(1)−(1−ω)I ′(1), which in particular

ensures that I(ω) is well-defined. That I is convex and λ ≤ I ′(ω) implies I(ω) +λ(1−
ω) ≤ I(1)−I ′(1)(1−1). So some θ∗∗ ∈ [ω, 1] has I∗(θ) = I(ω)+λ(θ−ω) for θ ∈ [ω, θ∗∗]

and equal to I(1) − I ′(1)(1 − θ) for θ ∈ [θ∗∗,∞), verifying the first bullet. Moreover,

because λ ≥ 0 and I(1) − I ′(1)(1 − θ) ≤ I(θ) ≤ Ī(θ) for each θ ∈ [0, 1], it follows by

construction that I∗ − I is nonpositive on [ω, 1] and nonnegative on [0, ω].
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Figure 8: Construction of (θ∗, θ∗∗, I∗) in Lemma 5

All that remains is to show that I∗ ∈ I(Ī). Letting I : R+ → R+ be given by

I(θ) := max{Ī(1)− Ī ′(1)(1−θ), 0}, we need to check that I ≤ I∗ ≤ Ī and I∗ is convex.

On [0, θ∗], we have I∗ = Ī ≥ I. On [θ∗, ω], we have shown that I∗ ≥ I ≥ I, and we

know I∗ ≤ Ī by the definition of λ. On [ω,∞), we have shown that I∗ ≤ I ≤ Ī, and

we have I∗ ≥ I by definition. So I ≤ I∗ ≤ Ī globally.

Finally, we verify convexity. Because the two affine functions coincide at θ∗∗ ≥ θ∗,

we know that I∗(θ) = max{I(ω) + λ(θ − ω), I(1) − (1 − θ)I ′(1)} for θ ∈ [θ∗,∞).

A maximum of two affine functions, I∗|[θ∗,∞) is convex. Moreover, I∗|[0,θ∗] is convex.

Globally convexity then follows if I∗ is subdifferentiable at θ∗. But λ is a subdifferential

of Ī ≥ I∗ at θ∗, and the two functions coincide at θ∗. It is therefore a subdifferential

for I∗ at the same, as required.
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Lemma 6. Suppose H̃ : Θ→ R has H̃(·) = H̃(0) +
∫ (·)

0
h̃(θ) dθ for some h̃ of bounded

variation. Then, for any I, Î ∈ I such that I(1)− Î(1) = I ′(1)− Î ′(1) = 0, we have[
H̃(0)Î ′(0) +

∫ 1

0

H̃ dÎ ′
]
−
[
H̃(0)I ′(0) +

∫ 1

0

H̃ dI ′
]

=

∫ 1

0

(Î − I) dh̃.

In particular, if H̃ is piecewise convex-or-concave; h̃ is a one-sided derivative of H̃;

and I, Î ∈ I(Ī) for some Ī ∈ I with Ī ′(0) = 0; then∫ 1

0

H̃ dÎ ′ −
∫ 1

0

H̃ dI ′ =

∫ 1

0

(Î − I) dh̃.

Proof. Given the first formula, the last sentence follows from the fact that a piecewise

monotone function on [0, 1] has bounded variation, the definition of I(Ī), and the

observation that I ′(0) = Î ′(0) = 0 if 0 ≤ I, Î ≤ Ī and Ī ′(0) = 0. To see the first

formula holds, observe integration by parts yields[
H̃(0)Î ′(0) +

∫ 1

0

H̃ dÎ ′
]
−
[
H̃(0)I ′(0) +

∫ 1

0

H̃ dI ′
]

= H̃(0)(Î − I)′(0) +

∫ 1

0

H̃ d(Î − I)′

= H̃(0)(Î − I)′(0) +
[
(Î − I)′H̃

]1

0
−
∫ 1

0

(Î − I)′ dH̃

= −
∫ 1

0

(Î − I)′(θ)h̃(θ) dθ

= −
[
(Î − I)h̃

]1

0
+

∫ 1

0

(Î − I) dh̃

=

∫ 1

0

(Î − I) dh̃.

We now complete our elementary proof that upper censorship is an optimal persua-

sion rule for convex-concave objectives. Recall, for θ∗ ∈ [0, 1] and µ ∈ ∆Θ, a θ∗ upper

censorship of µ is

1[0,θ∗)µ+ µ[θ∗, 1]δEµ[θ | θ≥θ∗] ∈ ∆Θ

if µ[θ∗, 1] > 0, and simply µ if µ[θ∗, 1] = 0.

Lemma 7. Suppose H̃ : Θ → R is continuous, and ω ∈ [0, 1] is such that H̃ is
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(strictly) convex on [0, ω] and (strictly) concave on [ω, 1]. Then, if µ̄ ∈ ∆Θ has no

atoms < max supp(µ̄), some (every) solution to maxµ∈∆Θ: µ�µ̄
∫
H̃ dµ is a θ∗ upper

censorship of µ̄ for some θ∗ ∈ [0, ω]. Moreover, if µ̄(θ∗, 1] > 0, then Eµ̄[θ | θ ≥ θ∗] ≥ ω;

hence, this θ∗ upper censorship puts probability 1 on [0, θ∗] ∪ [ω, 1].

Proof. Let µ be a solution to the given program. Taking Ī := Iµ̄ and I := Iµ, note that

the conditions of Lemma 5 are satisfied. Let I∗ ∈ I, θ∗ ∈ [0, ω], and θ∗∗ ∈ [ω, 1] be as

delivered by Lemma 5 and µ∗ ∈ ∆Θ be such that I∗ = Iµ∗ ; recall this µ∗ � µ̄. Then,

by Lemma 6 (letting h̃ := H̃ ′),∫ 1

0

H̃ dµ∗ −
∫ 1

0

H̃ dµ =

∫ ω

0

(I∗ − I) dh̃+

∫ 1

ω

(I − I∗) d(−h̃).

As h̃ is (strictly) increasing on [0, ω) and (strictly) decreasing on [ω, 1], it follows from

the definition of I∗ that
∫ 1

0
H̃ dµ∗ ≥

∫ 1

0
H̃ dµ, (strictly so, given continuity of I∗ − I,

unless I = I∗). Optimality of µ then tells us that µ∗ is optimal (and equal to µ).

Now, let us establish that µ∗ is a θ∗ upper censorship of µ̄. First, that I∗′|[θ∗∗,∞) = 1

implies µ∗(θ∗∗, 1] = 0; and that I∗|[θ∗,θ∗∗] is affine implies µ∗(θ∗, θ∗∗) = 0. Hence,

[θ∗, 1]∩supp(µ∗) ⊆ {θ∗, θ∗∗}. Further, because µ̄{θ∗} = 0 if µ̄(θ∗, 1] > 0 (by hypothesis),

we have |[θ∗, 1] ∩ supp(µ∗)| ≤ 1. Also by construction, µ∗[0, θ] = µ̄[0, θ] for every θ ∈
[0, θ∗). As these properties—which are clearly also satisfied by a θ∗ upper censorship

of µ̄—characterize a unique distribution of any given mean, µ∗ is a θ∗ upper censorship

of µ̄.

Finally, the “moreover” point follows from θ∗∗ ≥ ω, as guaranteed by Lemma 5,

and the fact that [θ∗, 1] ∩ supp(µ∗) ⊆ {θ∗, θ∗∗}.

Recall now our notational convention from section 6.3: Given a bounded and

measurable f : Θ → R and µ ∈ ∆Θ, let fµ denote the measure on Θ given by

fµ(Θ̂) :=
∫

Θ̂
f dµ.

Lemma 8. A unique θ̄χ ∈ [0, 1] exists such that39 Iχµ0(θ∗) =
∫ θ∗

0
χµ0[0, θ] dθ is

> θ∗ − θ0 for θ∗ ∈ [0, θ̄χ)

= θ∗ − θ0 for θ∗ = θ̄χ

< θ∗ − θ0 for θ∗ ∈ (θ̄χ, 1].

39Integration by parts shows that this definition of θ̄χ is equivalent to that in Equation θ∗-IC.
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Moreover, θ̄χ ≥ θ0 and, if credibility is imperfect, θ̄χ < 1.

Proof. Let ϕ(θ∗) := (θ∗ − θ0) −
∫ θ∗

0
χµ0[0, θ] dθ =

∫ θ∗
0

(1− χµ0[0, θ]) dθ − θ0 for θ∗ ∈
Θ. Clearly, ϕ is continuous and strictly increasing. Next, observe that ϕ(θ0) =

−
∫ θ0

0
χµ0[0, θ] dθ ≤ 0, and

ϕ(1) = (1− θ0)−
∫ 1

0

χµ0[0, θ] dθ = Iµ0(1)− Iχµ0(1) = I(1−χ)µ0(1) ≥ 0,

with the last inequality being strict unless credibility is perfect (that is, unless µ0{χ =

1} = 1). The result then follows from the intermediate value theorem.

In what follows, recall the mean distribution µ̄χ as defined for state-independent

credibility χ = χ in section 5, and defined analogously for the general case in sec-

tion 6.3.

Lemma 9. For any θ ∈ [0, 1], we have

Iµ̄χ(θ) = max{Iχµ0(θ), θ − θ0} =

Iχµ0(θ) : θ ≤ θ̄χ

θ − θ0 : θ ≥ θ̄χ.

Moreover, Eµ̄χ = θ0.

Proof. That Iµ̄χ coincides with Iχµ0 on [0, θ̄χ] and has derivative 1 on (θ̄χ, 1] follows

directly from the definition of µ̄χ. Noting that Iχµ0(θ̄χ) = θ̄χ − θ0 by Lemma 8, it

follows that Iµ̄χ(θ) = θ − θ0 for θ ∈ [θ̄χ, 1].

Next, recall that Iχµ0(θ) − (θ − θ0) is nonnegative for θ ∈ [0, θ̄χ] and nonpositive

for θ ∈ [θ̄χ, 1] by Lemma 8. Consequently, Iµ̄χ(θ) = max{Iχµ0(θ), θ − θ0} for every

θ ∈ [0, 1].

Finally, Eµ̄χ = 1− Iµ̄χ(1) = θ0.

We now prove the following generalization of Claim 1 to the case of state-dependent

credibility:

Claim 1*. Some θ∗ ∈ [0, θ̄χ] exists such that the θ∗ upper censorship of µ̄χ, denoted

by µχ,θ∗, satisfies

v∗χ(µ0) = v̂(µ̄χ) =

∫
H(·) dµχ,θ∗ .

Moreover, the corresponding θ∗-upper-censorship pair is an S-optimal χ-equilibrium

that induces µχ,θ∗ as its posterior mean distribution.
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Proof. First, we show that v̂(µ̄χ) = maxθ∗∈[0,θ̄χ]

∫
H dµχ,θ∗ , and that the maximum on

the RHS is attained. By Lemma 7, some θ∗ ∈ [0, ω] exists such that v̂(µ̄χ) =
∫
H dµχ,θ∗ .

As µ̄χ[0, θ̄χ] = 1, we have µχ,θ = µχ,θ̄χ for every θ ∈ [θ̄χ, 1]; so we may without loss

take θ∗ ≤ θ̄χ. Furthermore, since∫
H dµχ,θ∗ = v̂(µ̄χ) = max

µ�µ̄χ

∫
H dµ ≥

∫
H dµχ,θ

for every θ ∈ [0, θ̄χ], the maximum is attained.

Next, given θ∗ ∈ [0, θ̄χ], we exhibit an equilibrium in which S communicates via a θ∗-

upper-censorship pair, and observe that this induces S value
∫
H dµχ,θ∗—in particular

showing
∫
H dµχ,θ∗ ≤ v∗χ(µ0). To that end, define the belief map π : M → ∆Θ via

π(m) =

δm : m ∈ [0, θ∗)

γ : otherwise,

where γ :=
[1−χ1[0,θ∗)]µ0

1−χµ0[0,θ∗)
(with γ := δ1 if χµ0[0, θ∗) = 1)—that is, γ is R’s posterior belief

upon hearing message 1 given a θ∗-upper-censorship pair. Then let R behavior be given

by α := H ◦E ◦ π. The Bayesian property is now straightforward, and the R incentive

condition holds by construction. To verify that this is a χ-equilibrium, then, we need

only check that S behavior is optimal under influenced reporting. As the set of interim

own-payoffs S can induce with some message is {H(θ) : θ ∈ [0, θ∗) or θ = Eγ} , and H

is strictly increasing on [0, 1], it remains to see that Eγ ≥ θ∗, that is, that Equation θ∗-

IC is satisfied. This property follows directly from θ∗ ≤ θ̄χ given Lemma 8, delivering

S incentive compatibility. To show this equilibrium generates the required payoff, it

suffices to show that the induced distribution µ of posterior means is equal to µχ,θ∗ .

For any θ ∈ [0, θ∗), notice that

µ[0, θ) =

∫ θ

0

χ dµ0 = µ̄χ[0, θ) = µχ,θ∗ [0, θ).

Moreover, |[θ∗, 1] ∩ supp(µ)| = 1 = |[θ∗, 1] ∩ supp(µχ,θ∗)|. Equality then follows from

equality of their means (Lemma 9).

Finally, we show that v∗χ(µ0) ≤ v̂(µ̄χ). To that end, let (β, γ, k) solve the program

of Theorem 1 – and, without loss, say β = µ0 if k = 0. Let ω := ω∗ ∧ Eγ, and see

that H(Eγ) ∧H is continuous, convex on [0, ω], and concave on [ω, 1]. Therefore, by
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Lemma 7, there is some θ∗ ∈ [0, ω] such that the θ∗ upper censorship of β belongs

to argmaxβ̂�β
∫
H(Eγ) ∧ H dβ̂. Let λ := β[0, θ∗) ∈ [0, 1], η :=

1[θ∗,1]β

1−λ ∈ ∆Θ, γ̂ :=
(1−k)γ+(1−λ)kη

1−λk ∈ ∆Θ, and β̂ :=
1[0,θ∗)β

λ
∈ ∆Θ.40 Two observations will enable us to

bound S payoffs across all equilibria. First, as a monotone transformation of an affine

functional, v = H ◦ E is quasiconcave, implying v̄ = v. Second, Lemma 7 tells us

Eη ≥ ω, so that H(Eγ) ∧H is concave on co{Eγ,Eη}. Now, observe that

v∗χ(µ0) = kv̂∧γ(β) + (1− k)v̄(γ)

= k

∫
H(Eγ) ∧H d

[
1[0,θ∗)β + (1− λ)δEη

]
+ (1− k)H(Eγ)

= k

[
λ

∫
H dβ̂ + (1− λ)H(Eγ) ∧H(Eη)

]
+ (1− k)H(Eγ) ∧H(Eγ)

≤ kλ

∫
H dβ̂ + (1− kλ)H(Eγ) ∧H(Eγ̂)

≤
∫
H d

[
kλβ̂ + (1− λk)δEγ̂

]
≤ v̂

(
kλβ̂ + (1− λk)δEγ̂

)
.

Letting µ̂ := kλβ̂+ (1−λk)δEγ̂, the payoff ranking (and so too the claim) will follow if

we show that µ̂ � µ̄χ. As (appealing to Lemma 9) Eµ̄χ = θ0 = Eµ̂, it suffices to show

that Iµ̂ ≤ Iµ̄χ .

For θ ∈ [0, Eγ̂), we have δEγ̂[0, θ] = 0. Therefore, over the interval [0, Eγ̂], we have

Iµ̂ = Iλkβ̂ + (1− λk)IδEγ̂ = Iλkβ̂ ≤ Ikβ = Iµ0 − I(1−k)γ ≤ Iµ0 − I(1−χ)µ0 = Iχµ0 .

Now, as Iµ̂(1) = 1 − θ0 and (since Eγ̂ ≥ θ0) we have I ′µ̂|(Eγ̂,1) = 1, we know Iµ̂(θ) =

θ − θ0 for θ ∈ [Eγ̂, 1]. In particular, we learn that Iµ̂(θ) ≤ max{Iχµ0(θ), θ − θ0} for

θ ∈ [0, Eγ̂] ∪ [Eγ̂, 1]. Lemma 9 then tells us that Iµ̂ ≤ Iµ̄χ .

A.5.3 Comparative Statics

Now, we prove Claim 2. In fact, because the proof applies without change, we prove a

slightly stronger result, providing comparative statics results in the credibility function

and the prior, holding the prior mean fixed. Specifically, given two pairs of parameters

〈µ0,χ〉 and 〈µ̃0, χ̃〉 such that Eµ0 = Eµ̃0 = θ0, we show that v∗χ(µ0) ≥ v∗χ̃(µ̃0) if and

40In case any of the described objects is defined by an expression with a zero denominator, we define
it as follows: η := δ1 if λ = 1, γ̂ := δ1 if λk = 1, and β̂ := δ0 if λ = 0.

31



only if µ̄χ � ¯̃µχ̃.

Proof. Appealing to Claim 1 and Lemma 6,

v∗χ(µ0)− v∗χ̃(µ̃0) = v̂(µ̄χ)− v̂(¯̃µχ̃)

= max
I∈I(Iµ̄χ )

[
H(0)I ′(0) +

∫ 1

0

H dI ′
]
− max

Ĩ∈I(I ¯̃µχ̃
)

[
H(0)Ĩ ′(0) +

∫ 1

0

H dĨ ′
]

= max
I∈I(Iµ̄χ )

∫ 1

0

H dI ′ − max
Ĩ∈I(I ¯̃µχ̃

)

∫ 1

0

H dĨ ′

= max
I∈I(Iµ̄χ )

∫ 1

0

I dh− max
Ĩ∈I(I ¯̃µχ̃

)

∫ 1

0

Ĩ dh.

Let I∗ := Iµ̄χ and Ĩ∗ := I ¯̃µχ̃ . We now need to show that maxI∈I(I∗)

∫ 1

0
I dh ≥ maxĨ∈I(Ĩ∗)

∫ 1

0
Ĩ dh

for every continuous, strictly quasiconcave h : [0, 1]→ R if and only if I∗ ≥ Ĩ∗.

First, if I∗ ≤ Ĩ∗ then I(I∗) ⊆ I(Ĩ∗), delivering the payoff ranking.

Conversely, suppose I∗ � Ĩ∗. Then, elements of I being continuous, there are some

θ1, θ2 ∈ Θ such that θ1 < θ2 and I∗ > Ĩ∗ on (θ1, θ2). If h is increasing, then

v∗χ(µ0)− v∗χ̃(µ0) =

∫ 1

0

I∗ dh−
∫
Ĩ∗ dh =

∫ 1

0

(I∗ − Ĩ∗) dh.

As (I∗− Ĩ∗) is strictly positive over (θ1, θ2), globally bounded, and globally continuous,

there is ε > 0 small enough that
(
ε
∫ θ1

0
+
∫ θ2
θ1

+ε
∫ 1

θ2

) [
I∗(θ)− Ĩ∗(θ)

]
dθ > 0. It is then

straightforward to construct a shock distribution whose continuous density h satisfies

h′|(0,θ1)∪(θ2,1) = εζ and h′|(θ1,θ2) = ζ for some ζ > 0. Such a shock distribution witnesses

a failure of v∗χ(µ0) ≥ v∗χ̃(µ̃0).

B Extensions: Proofs from section 6

This section contains the formal results reported in section 6, along with their proofs.

B.1 On S’s χ-equilibrium Payoff Sets

We begin by providing results on the space of S payoffs which will be of use in two

of the extensions that follow. First, we characterize the set of payoffs attainable in
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χ-equilibrium by an influencing S, in particular showing this payoff set is an interval.

Then, we show the set of ex-ante S payoffs attainable in χ-equilibrium is an interval as

well. We note that these results also hold under the modified finite-message setting of

Appendix B.2, via an appeal to Carathéodory’s theorem.

Toward the proof, we first record a useful property of Kakutani correspondences.

Fact 3. The range of a Kakutani correspondence from a nonempty, compact, convex

space to R is a nonempty compact interval.

Proof. Nonemptiness is trivial. Compactness of the range holds because the corre-

spondence is upper hemicontinuous on a compact domain. Convexity follows from

the intermediate value theorem for correspondences (e.g., Lemma 2 of de Clippel,

2008).

Next, we will establish convexity and compactness of the sets of S’s possible χ-

equilibrium ex-ante payoffs and payoffs from influencing. To do so, given any χ ∈ [0, 1],

we now provide a characterization of the set

Sχi := {si ∈ R : (p, so, si) is a χ-equilibrium outcome for some p, so}.

Lemma 10. Let si ∈ R. Then si ∈ Sχi if and only if some k ∈ [0, 1], γ, β ∈ ∆Θ exist

such that

(i) kβ + (1− k)γ = µ0,

(ii) (1− k)γ > (1− χ)µ0,

(iii) max{w(β), w(γ)} ≤ si ≤ v̄(γ).

Moreover, the set Sχi is nonempty compact interval.

Proof. By Lemma 1, si ∈ Sχi if and only if some k ∈ [0, 1], g, b ∈ ∆∆Θ exist such that

(i′) kb+ (1− k)g ∈ R(µ0),

(ii′) (1− k)
∫
µ dg(µ) > (1− χ)µ0,

(iii′) g{V 3 si} = b{w ≤ si} = 1.

Then the existence of (k, g, b) satisfying (i′-iii′) immediately implies the existence of

(k, γ, β) satisfying (i-iii) by setting γ :=
∫
µ dg(µ), β :=

∫
µ db(µ). Conversely, let

(k, γ, β) satisfy (i-iii). By Lipnowski and Ravid’s (2020) Theorem 2 and Corollary 3:
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• Some g ∈ R(γ) exists with g{V 3 si} = 1 if and only if si ∈ [w(γ), v̄(γ)],

• Some b ∈ R(β) exists with b{w ≤ si} = 1 if and only if si > w(β).

Thus, we obtain the desired characterization.

Finally, to show the “moreover” part, rewrite the above characterization of Sχi as

follows. LetM be the set of Borel measures on Θ and G := {η ∈M : (1− χ)µ0 ≤ η ≤
µ0}, a compact convex subset. Define the functions

ṽ : M→ R w̃ : M→ R

η 7→

v̄
(

η
η(Θ)

)
: η 6= 0

max v̄(∆Θ) : η = 0
η 7→

w
(

η
η(Θ)

)
: η 6= 0

minw(∆Θ) : η = 0

κ : G → R
η 7→ ṽ(η)−max{w̃(η), w̃(µ0 − η)}.

Then the above characterization implies that si ∈ Sχi if and only if some η ∈ G exists

such that si ∈ [max{w̃(η), w̃(µ0− η), ṽ(η)], because (k, γ, β) 7→ (1− k)γ is a surjection

from the subset of (k, γ, β) ∈ [0, 1] × ∆Θ2 satisfying (i-ii) to G. But this means that

Sχi = τ(G∗), where G∗ := κ−1([0,∞)) and τ is a correspondence defined as

τ : G∗ ⇒ R
η 7→ [max{w̃(η), w̃(µ0 − η)}, ṽ(η)].

We now proceed to show Sχi is a nonempty compact interval. First, observe that κ

is upper semicontinuous and quasiconcave—since both v̄ and −w are and, therefore, so

are ṽ and −w̃. Hence, the set κ−1([0,∞)) = G∗ is compact and convex, and it is also

nonempty because it contains µ0. Second, note that τ is a Kakutani correspondence

since it is compact-convex-valued by definition; nonempty-valued by the definition of

G∗; and upper hemicontinuous by upper (resp. lower) semicontinuity of ṽ (w̃). Hence,

the result follows from Fact 3.

Building on the previous two lemmas, the following result shows that the set of

ex-ante S’s χ-equilibrium payoffs is convex.

Lemma 11. The set {χso+(1−χ)si : (p, so, si) is a χ-equilibrium outcome} of ex-ante

χ-equilibrium payoffs is a nonempty compact interval.
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Proof. Define the correspondence

ς : Sχi ⇒ R
si 7→ {χso + (1− χ)si : (p, so, si) is a χ-equilibrium outcome}.

We will show that ς is a Kakutani correspondence, which will give the desired result

in light of Fact 3 and Lemma 10.

First, ς is nonempty-valued by the definition of Sχi . Second, the graph of ς is com-

pact as a continuous image of the compact space X defined in the proof of Corollary 1.

Therefore, ς is compact-valued and upper hemicontinuous.

Finally, we show that ς is convex-valued. Fix any si ∈ Sχi , s, s′ ∈ ς(si), λ ∈ (0, 1).

By Lemma 1, there exist k, k′ ∈ [0, 1], g, g′, b, b′ ∈ ∆∆Θ such that

kb+ (1− k)g ∈ R(µ0), k′b′ + (1− k′)g′ ∈ R(µ0),

(1− k)

∫
µ dg(µ) > (1− χ)µ0, (1− k′)

∫
µ dg′(µ) > (1− χ)µ0,

s ∈ (1− k)si + k

∫
supp(b)

si ∧ V db, s′ ∈ (1− k′)si + k′
∫

supp(b′)

si ∧ V db′.

Let s∗ := λs + (1 − λ)s′, k∗ := λk + (1 − λ)k′, g∗ := λ 1−k
1−k∗ g + (1 − λ) 1−k′

1−k∗ g
′, and

b∗ := λ k
k∗
b + (1− λ) k

′

k∗
b′. Then, by Lemma 1, (k∗, g∗, b∗) witness a χ-equilibrium with

expected payoff s∗ influencing payoff si. Thus, ς(si) is convex.

B.2 Strong robustness: Proofs from section 6.1

This section provides the formal counterpart to section 6.1. We first introduce a notion

of equilibrium that captures S’s ex-ante incentives concerning her choice of official

reporting protocol. We then characterize when, in the limit as credibility becomes

perfect, every such equilibrium gives S a payoff approaching her full-credibility payoff

v∗1(µ1).

Throughout Appendix B.2, we maintain the following assumption.

Assumption 1. The sets A, Θ, and M are all finite, and |M | ≥ 2|Θ|.

Thus, we specialize to the finite model, and further alter the model to impose that

only finitely many messages are available to S. We make this finite-message assump-

tion to simplify the analysis of players’ behavior off of the equilibrium path. Ob-

serve this finite-message assumption does not alter the set of attainable χ-equilibrium
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(so, si) pairs, relative to our original model with M uncountable, given Lemma 1 and

Carathéodory’s theorem.

To formalize the relevant solution concept, let Ξ denote the set of all official report-

ing protocols, i.e., maps ξ : Θ→ ∆M . Then let σ : Θ× Ξ→ ∆M , α : M × Ξ→ ∆A,

and π : M × Ξ → ∆Θ denote S’s influencing strategy, R’s strategy, and R’s belief

map, respectively, that take into account the announced reporting protocol ξ ∈ Ξ. A

χ-PBE is a tuple (ξ,σ,α,π) such that (ξ′,σ(·, ξ′),α(·, ξ′),π(·, ξ′)) is a χ-equilibrium

for any ξ′ ∈ Ξ, and ξ ∈ Ξ maximizes S’s ex-ante payoff∫
Θ

(∫
M

[∫
A

uS(a) dα(a|m, ξ)
]

[χ(θ) dξ(m|θ) + (1− χ(θ)) dσ(m|θ, ξ)]
)

dµ0(θ).

The following proposition, reported in section 6.1, characterizes when the full com-

mitment value is robust to partial commitment under the worst equilibrium selec-

tion in a finitary setting. To state the result, define the worst-value function,

w(µ) := minV (µ), which identifies S’s lowest continuation payoff from inducing be-

lief µ. Then, let w∗χ(µ0) denote the worst χ-PBE S value.41

Proposition 5. The following are equivalent:

1. The full-commitment value is strongly robust to partial credibility: limχ↗1w
∗
χ(µ0) =

v∗1(µ0) for every full-support prior µ0.

2. The full-commitment value is robust to equilibrium selection: w∗1(µ0) = v∗1(µ0)

for every full-support prior µ0.

Moreover, for almost every R objective, the full commitment value is strongly robust to

partial credibility.42

B.2.1 Constructing off-path χ-equilibria

In this subsection, we establish that every official reporting protocol that S chooses

can be associated with appropriately “adversarial” continuation play. The possibility

of such continuation play is useful for studying the range of S payoffs attainable in a

χ-PBE.

41Formally, w∗χ(µ0) is the infimum over all χ-PBE S values.
42That is, fixing finite A and Θ, for all but a Lebesgue-null (and nowhere dense) set of R objectives

uR ∈ RA×Θ (and every S objective uS ∈ RA), the full commitment value is strongly robust to partial
credibility.
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Toward constructing adversarial equilibria, we begin with a technical lemma show-

ing any reporting protocol comprises part of a χ-equilibrium in which R always chooses

from a given restricted set of best responses.

Lemma 12. If Ṽ ⊆ V is a Kakutani correspondence and ξ is any official reporting

protocol, then some χ-equilibrium (ξ, σ, α, π) exists such that uS(α) ∈ Ṽ (π).

Proof. Let Π := (∆Θ)M be the set of all R belief mappings and define correspondences

Ŝ : Π⇒ R

π 7→
[
max
m∈M

min Ṽ (π(m)),max
m∈M

max Ṽ (π(m))

]
,

M̂ : Π⇒M

π 7→
{
m ∈M : Ṽ (π(m)) ∩ Ŝ(π) 6= ∅

}
.

Observe that Ŝ is Kakutani, since Ṽ is Kakutani and a finite maximum or minimum of

upper or lower semicontinuous functions inherits the same semicontinuity. Therefore,

M̂ is nonempty-valued with closed graph. Now let Σ := (∆M)Θ and consider the

correspondence mapping belief maps into S-IC influencing strategies (assuming R’s

strategy delivers S values from Ṽ )

Σ̂ : Π⇒ Σ

π 7→
{
σ ∈ Σ: ∪θ∈Θ supp(σ(θ)) ⊆ M̂(π)

}
,

and the correspondence mapping influencing strategies into consistent belief maps

Π̂ : Σ⇒ Π,

σ 7→
{
π ∈ Π: π(θ|m)

∫
Θ

[
χ dξ(m|·) + (1− χ)σ(m|·)

]
dµ0

= [χ(θ)ξ(m|θ) + (1− χ(θ))σ(m|θ)]µ0(θ), ∀θ ∈ Θ,m ∈M
}
.

It then follows that Σ̂ and Π̂ are both Kakutani. Therefore, the Kakutani fixed point

theorem delivers some σ ∈ Σ and π ∈ Π such that σ ∈ Σ̂(π) and π ∈ Π̂(σ). Now, take

any si ∈ Ŝ(π) and let D := π(M). Note that si∧Ṽ |D is nonempty-valued and so admits

a selector φ : D → R. Therefore, some α̃ : D → ∆A exists such that uS(α̃(m)) = φ(m).

Next, define α := α̃ ◦ π : M → ∆(A). It is then easy to verify that (ξ, σ, α, π) is a
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χ-equilibrium in the model with the state space Θ and the message space M .

To construct S-adversarial continuation play, it will be convenient to define the

function

ŵ : ∆Θ→ R

µ 7→ sup
p∈R(µ)

∫
w dp,

and the payoff s1(µ0) := ŵ(µ0); when no confusion arises, we will omit the dependence

on the prior and simply write s1. The following lemmas show (with finite states) that

s1 is an upper bound on the S value in the worst χ-equilibrium, an upper bound on

the worst χ-PBE value, and the minimal 1-PBE value.

Lemma 13. Every official reporting protocol ξ admits some χ-equilibrium (ξ, σ, α, π)

with ex-ante S payoff weakly below s1.

Proof. Without loss, we can focus on the case that µ0 is of full support. Indeed,

if we construct a χ-equilibrium as desired (for official reporting protocol ξ|Θ0) in the

restricted model with state space Θ0 := supp(µ0), then this equilibrium can be extended

to a χ-equilibrium in the true model, by fixing any θ0 ∈ Θ0 and extending σ to Θ via

σ(θ) := σ(θ0) for θ ∈ Θ \Θ0.

Note the lemma follows directly from Lemma 12 if we can find a Kakutani sub-

correspondence Ṽ ⊆ V such that cav[max Ṽ ](µ0) ≤ s1. We now show one can set

Ṽ := [w, z] where z is the upper semicontinuous envelope of w, given by

z : ∆Θ→ R
µ 7→ lim sup

µ′→µ
w(µ).

First, Ṽ is a Kakutani subcorrespondence of V since z is upper semicontinuous and

lies above the lower semicontinuous function w. All that remains, then, is to show

that s1 ≥ cav[max Ṽ ](µ0) = ẑ(µ0). To do so, let us establish the stronger claim that

ẑ|D = ŵ|D, where D ⊆ ∆Θ is the set of full-support beliefs.

Define

z̃ : ∆Θ→ R
µ 7→ lim sup

µ′→µ
ŵ(µ).
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It follows from concavity of ŵ that z̃ is concave too. Hence, because z̃ ≥ z and z̃ is

upper semicontinuous by construction, it follows that z̃ ≥ ẑ.43 Moreover, Theorem

10.4 from Rockafellar (2015) implies the concave function ŵ|D is continuous. Hence,

z̃|D = ŵ|D by the definition of z̃. That z̃ ≥ ẑ ≥ ŵ then implies ẑ|D = ŵ|D.

B.2.2 On the range of PBE payoffs

Here, we provide a sufficient condition for a payoff to be compatible with χ-PBE for

an arbitrary χ, as well as an exact characterization for the case of perfect credibility.

Lemma 14. If Θ and M are finite, and s ∈ [s1 ∧ v∗χ(µ0), v∗χ(µ0)], then some χ-PBE

exists with ex-ante S payoff s.

Proof. First, we argue that a χ-equilibrium exists with ex-ante S payoff s. To that

end, observe that Lemma 1 implies (δµ0 , w(µ0), w(µ0)) is a χ-equilibrium outcome (as

witnessed by k = χ and g = b = δµ0). But then, as Theorem 1 says v∗χ(µ0) is

the highest χ-equilibrium S payoff, it follows from Lemma 11 that every payoff in

[w(µ0), v∗χ(µ0)] is a χ-equilibrium S payoff. Thus, s is a χ-equilibrium S payoff because

w(µ0) =
∫
w dδµ0 ≤ s1 ≤ s. So let (ξ∗, σ∗, α∗, π∗) be some χ-equilibrium generating S

payoff s.

Finally, construct σ∗, α∗, and π∗ as follows. First, let σ∗(ξ∗) := σ∗,α∗(ξ∗) :=

α∗,π∗(ξ∗) := π∗. Second, for each ξ 6= ξ∗ find a χ-equilibrium (ξ,σ∗(ξ),α∗(ξ),π∗(ξ))

with ex-ante S value of at most s1, which exists by Lemma 13. Since s ≥ s1,

(ξ∗,σ∗,α∗,π∗) is a χ-PBE as desired.

Finally, we characterize the set of all 1-PBE S payoffs.

Lemma 15. The set of all 1-PBE S values is given by [s1, s̄1], where

s1 := sup
p∈R(µ0)

∫
w dp, s̄1 := v∗1(µ0) = max

p∈R(µ0)

∫
v dp.

Proof. Given a payoff s ∈ R, Proposition 1 of Lipnowski, Ravid, and Shishkin (2021)

tells us s ∈ [s1, s̄1] if and only if ξ : Θ→ ∆M , α : M ×Ξ→ ∆A, and π : M ×Ξ→ ∆Θ

exist such that α(m, ξ′) maximizes R’s expected payoff given belief π(m, ξ′) for every

m ∈ M and ξ′ ∈ Ξ; π(·, ξ′) satisfies the Bayesian property given prior µ0 for every

ξ′ ∈ Ξ; choosing ξ′ = ξ maximizes S’s expected payoff given prior µ0 from profile (ξ′, α)

43In fact, one can show z̃ = ẑ, but this fact is immaterial to the present argument.
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over all ξ′ ∈ Ξ; and this maximal expected S payoff is equal to s. These conditions are

obviously implied by (ξ,σ,α,π) being a 1-PBE for some σ; and conversely, pairing

them with any best response σ for an influencing S (which exists because M is finite)

yields a 1-PBE. The lemma follows.

B.2.3 Proof of Proposition 5

Proof. The “moreover” part follows directly from the equivalence, given Proposition 4

of Lipnowski, Ravid, and Shishkin (2021). We now proceed to prove the equivalence.44

Because v∗1 ≥ w∗1 by definition, it suffices to show that limχ↗1w
∗
χ(µ0) = w∗1(µ0) for

every full-support µ0 ∈ ∆Θ. Fix any full-support prior µ0, and denote sχ := w∗χ(µ0)

for χ ∈ [0, 1). By Lemma 14, sχ ≤ s1 for all χ ∈ [0, 1] and, therefore, lim supχ↗1 sχ ≤
s1 = w∗1(µ0) by Lemma 15. It therefore remains to show that lim infχ↗1 sχ ≥ s1, which

we do below.

Take an arbitrary ε > 0. By definition of s1, some p ∈ R(µ0) exists such that∫
w dp > s1 − ε. Moreover, because Θ is finite, we may further assume |supp(p)| ≤
|Θ| ≤ |M |, in light of Carathéodory’s theorem. For each µ ∈ supp(p), let N(µ) ⊆ ∆Θ

be some open neighborhood of µ on which w > w(µ) − ε, which exists because w is

lower semicontinuous. Making {N(µ)}µ∈supp(p) smaller if necessary, we may assume

without loss that these finitely many neighborhoods are pairwise disjoint. Because

supp(p) is finite, some χ ∈ (0, 1) exists that 1
χp(µ)+(1−χ)

[(1− η)p(µ)µ+ η∆Θ] ⊆ N(µ)

for each µ ∈ supp(p), and so (since ∆Θ is convex) the containment holds as well when

we replace χ with any χ ∈ (χ, 1).

Consider now, any χ ∈ (χ, 1), and fix some (ξ,σ,α,π) generating S payoff s ∈ R.

Let ξp ∈ Ξ be some official reporting protocol that would, if credibility were perfect,

generate belief distribution p for R. Modifying ξp if necessary, we may assume without

loss that any two distinct messages from Mp := {m ∈ M :
∫

Θ
ξp(m|·) dµ0 > 0} would

generate distinct beliefs.45 Hence, every belief µ ∈ supp(p) admits a unique mµ ∈ Mp

such that every θ ∈ Θ has ξp(m|θ)µ0(θ)∫
Θ ξp(m|·) dµ0

= µ(θ). If S chooses official reporting protocol

ξp and sends message mµ for some µ ∈ supp(p), then the Bayesian property implies

R’s belief will be π(mµ, ξp) ∈ 1
χp(µ)+(1−χ)

[(1− η)p(µ)µ+ η∆Θ] ⊆ N(µ), so that R

44Whereas the “moreover” part relies on A being finite, the proof of the equivalence relies only on
Θ and M being finite.

45That is, we assume without loss that any two distinct m,m′ ∈ Mp have
ξp(m|θ)µ0(θ)∫
Θ
ξp(m|·) dµ0

6=
ξp(m′|θ)µ0(θ)∫
Θ
ξp(m′|·) dµ0

for some θ ∈ Θ.
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rationality implies S has continuation value exceeding w(µ)− ε. But because S chooses

ξ ∈ Ξ optimally, and has the option to choose ξp, it must be that

s ≥
∫

Θ

(∫
M

[∫
A

uS(a) dα(a|m, ξp)
]

d [χξp(m|θ) + (1− χ)σ(m|θ, ξp)]
)

dµ0(θ)

≥ χ

∫
Θ

∫
M

[∫
A

uS(a) dα(a|m, ξp)
]

dξp(m|θ) dµ0(θ) + (1− χ) minw(∆Θ)

≥ χ

∫
∆Θ

(w − ε) dp+ (1− χ) minw(∆Θ)

≥ χ(s1 − ε) + (1− χ) minw(∆Θ)

Because s was the payoff from an arbitrary χ-PBE, we learn that every χ ∈ (χ, 1) has

sχ ≥ χ(s1 − ε) + (1 − χ) minw(∆Θ), which converges to s1 − ε as χ converges to 1.

Hence, lim infχ↗1 sχ ≥ s1 − ε. But ε was itself an arbitrary positive constant, so that

lim infχ↗1 sχ ≥ s1, as desired.

B.3 Signaling Credibility: Proofs from section 6.2

In this section we present the formal analysis of the modified game in which S can

signal her credibility through the choice of the official reporting protocol.

We start by introducing the modified game and notation. At the beginning, S

privately learns her credibility type t ∈ T = {o, i}, i.e., whether the message will be

determined according to the official protocol (t = o), or it will be possible to influence

it (t = i). Then the game proceeds exactly as in our main model.

We focus on perfect Bayesian equilibria in which R’s off-path beliefs satisfy a stan-

dard “no signaling what you don’t know” restriction. To capture this idea, we de-

fine the equilibrium as follows. Let (ξo, ξi) ∈ Ξ2 denote S’s signaling strategy.46 Let

χ̃ : Ξ → [0, 1] denote R’s belief mapping from an announced official reporting pro-

tocol to S’s posterior credibility. Then, a χ signaling PBE (χ-SPBE) is a tuple

(ξo, ξi,σ,α, χ̃,π) of measurable maps47 such that

1. χ̃ is derived from χ via Bayes’ rule, given signal t 7→ ξt, whenever possible.48

46To simplify notation, here we focus on pure signaling strategies. An analogous result holds for
mixed signaling strategies.

47We define maps σ,α,π as in the definition of χ-PBE in section 6.1, but additionally require the
maps be measurable, where we view the space Ξ of measurable maps Θ→ ∆M as a measurable space
in which every subset is measurable. To simplify notation, let σξ := σ(·, ξ) and similarly for α, χ̃,
and π.

48For convenience, we identify with χ̃ξ the element of ∆T that assigns probability χ̃ξ to {o}

41



2. (ξ,σξ,αξ,πξ) is a χ̃ξ-equilibrium (for prior µ0) for each ξ ∈ Ξ.

3. ξt maximizes st(·) over Ξ, for each t ∈ {o, i}, where

so : Ξ→ R

ξ 7→
∫

Θ

∫
M

uS(αξ(m)) dξ(m|·) dµ0,

si : Ξ→ R

ξ 7→
∫

Θ

∫
M

uS(αξ(m)) dσξ(m|·) dµ0.

We call (maxΞ so,maxΞ si) = (so(ξo), si(ξi)) the corresponding S payoff vector. A

pooling χ-SPBE is one in which ξo = ξi.

Note that the above definition is equivalent to perfect Bayesian equilibria in which

R updates joint beliefs over T × Θ, satisfying a “no signaling what you don’t know”

refinement. Indeed, since the official protocol announcement cannot convey information

about the state, the T -marginal χ̃ξ pins down the joint belief χ̃ξ⊗µ0. Then, given the

form of R’s incentive constraints after a message is received, it is enough to keep track

of only the Θ-marginal πξ.

Recall, w : ∆Θ → R is the quasiconvex envelope of w—that is, the pointwise

highest quasiconvex and lower semi-continuous function that is everywhere below w,

or, equivalently, −w = −w. It follows directly from Lipnowski and Ravid (2020) that

a sender-worst 0-equilibrium exists and delivers S payoff w(µ0).

The following proposition establishes the equivalence between χ-equilibrium payoff

vectors and χ-SPBE payoff vectors for S.

Proposition 6. Fixing (so, si) ∈ R2, the following are equivalent:

(a) (so, si) is a χ-SPBE S payoff vector;

(b) (so, si) is a pooling χ-SPBE S payoff vector;

(c) (p, so, si) is a χ-equilibrium outcome for some p ∈ R(µ0).

Proof. First, (b) trivially implies (a).

Now, let us show (c) implies (b). To do so, consider some χ-equilibrium (ξ, σ, α, π)

generating outcome (p, so, si). Observe that, for each ξ′ ∈ Ξ \ {ξ}, some uncountable
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Borel Mξ′ ⊂ M exists such that
∫

Θ
ξ′(Mξ′ |·) dµ0 = 0.49 It then follows readily from

Theorem 2 of Lipnowski and Ravid (2020) that some 0-equilibrium (ξ′, σξ′ , αξ′ , πξ′)

exists giving S payoff w(µ0) with messages restricted to Mξ′ , that is, with σξ′(Mξ′ |·) =

1. We now proceed to construct a pooling χ-SPBE. Define an influencing sender

strategy σ and credibility belief function χ̃ by letting, for each ξ′ ∈ Ξ,

(σξ′ , χ̃ξ′) :=

(σ, χ) : ξ′ = ξ

(σξ′ , 0) : ξ′ 6= ξ.

Next, fix some µ∗ ∈ argmin∆Θ w and some R best response a∗ to µ∗ with uS(a∗) =

w(µ∗). Define a receiver strategy α and belief map (concerning the state) π by letting,

for each ξ′ ∈ Ξ and m ∈M ,

(αξ′(m), πξ′(m)) :=


(α(m), π(m)) : ξ′ = ξ

(αξ′(m), πξ′(m)) : ξ′ 6= ξ, m /∈Mξ′

(δa∗ , µ∗) : ξ′ 6= ξ, m ∈Mξ′ .

By construction, (ξ, ξ,σ,α, χ̃,π) satisfies conditions 1 and 2 of the definition of χ-

SPBE. Moreover, observe that, by Lemma 10, some γ, β ∈ ∆Θ exist such that si ≥
max{w(β), w(γ)} and µ0 ∈ co{γ, β}. Hence, si ≥ w(µ0) since w is quasiconvex.

Therefore, condition 3 of the definition of a χ-SPBE is satisfied because si(ξ) = si >

w(µ0) = si(ξ
′) and so(ξ) = so > min∆Θ w = so(ξ

′) for all ξ′ ∈ Ξ \ {ξ}. Therefore,

(ξ, ξ,σ,α, χ̃,π) is a pooling χ-SPBE with S’s payoff vector (so, si) as desired.

It remains to show that (a) implies (c). To that end, suppose (so, si) is some

χ-SPBE payoff vector, as witnessed by χ-SPBE (ξo, ξi,σ,α, χ̃,π) generating payoff

vector (so, si), and let the functions so, si be as defined in the definition of a χ-SPBE;

recall so, si ≤ si and si(ξi) = si. For any ξ ∈ Ξ with χ̃ξ = 1, that si(ξ) ≤ si

implies we can assume without loss (modifying αξ(m) and πξ(m) for some m ∈ M

with
∫

Θ
ξ(m|·) dµ0 = 0, and modifying σξ, similarly to in the proof of Lemma 15) that

si(ξ) = si. Therefore, si(ξi) = si(ξo) = si. For each ξ ∈ {ξo, ξi}, then, Lemma 1

49For any Borel probability measure η on [0, 1], construct an uncountable Borel η-null X ⊆ [0, 1] as
follows. First, express η = ληd + (1− λ)ηc for some λ ∈ [0, 1] and ηd, ηc ∈ ∆[0, 1] with ηd discrete and
ηc atomless; define the co-countable set X̂ := {x ∈ [0, 1] : ηd{x} = 0}. Let F denote the (continuous)
CDF of ηc. If F is constant on some nondegenerate interval I ⊆ [0, 1], then X := X̂ ∩ I is as desired.
Otherwise, X := X̂ ∩ F−1(C) is as desired, where C ⊂ [0, 1] is the Cantor set.

Finally, such Mξ′ exists since
∫

Θ
ξ′ dµ0 is a Borel probability measure on M , and the measurable

space M is isomorphic to [0, 1] by the Borel isomorphism theorem.
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delivers kξ ∈ [0, 1] and gξ, bξ ∈ ∆∆Θ satisfying

kξbξ + (1− kξ)gξ ∈ R(µ0),

(1− kξ)
∫
µ dgξ(µ) > (1− χ̃ξ)µ0,

gξ{si ∈ V } = bξ{si ≥ minV } = 1,

si − so(ξ) ∈ kξ
χ̃ξ

[
si −

∫
si ∧ V dbξ

]
.

But then consider

k := χkξo + (1− χ)kξi ∈ [0, 1),

b :=
χkξo
k
bξo +

(
1− χkξo

k

)
bξi ∈ ∆∆Θ,

g :=
(

1− (1−χ)(1−kξi )
1−k

)
gξo +

(1−χ)(1−kξi )
1−k gξi ∈ ∆∆Θ.

Direct computations with (k, g, b) then show, by Lemma 1, that (kb+ (1− k)g, so, si)

is a χ-equilibrium outcome.

B.4 Investing in Credibility: Proofs from section 6.4

In this section, we prove Claim 3 concerning the public persuasion application with

costly endogenous credibility. Toward the proof, we first establish the following

lemma.

Lemma 16. For any non-cutoff credibility choice (i.e. any χ such that there is no

θ∗ ∈ [0, 1] with χ = 1[0,θ∗) µ0-a.s.), there is some cutoff credibility choice that yields S

a strictly higher best equilibrium payoff net of costs.

Proof. Consider any credibility choice χ not of the desired form. In particular, this

implies that χ is not µ0-a.s. equal to 1, so that χµ0(Θ) < 1.

As µ0 is atomless, there is some θ∗ ∈ [0, 1) such that µ0[0, θ∗) = χµ0(Θ). That

1[0,θ∗)µ0 6= χµ0 but the two have the same total measure implies that supp[(1−χ)µ0] in-

tersects [0, θ∗). For each θ∗ ∈ [0, θ∗], define the function ηθ∗ := I1[0,θ∗)µ0−Iχµ0 : R+ → R.

By construction, its right-hand-side derivative at any θ is given by η′θ∗(θ) =
∫ θ

0
(1[0,θ∗)−

χ) dµ0. In particular, this implies (since χµ0 strictly first-order stochastically dom-

inates 1[0,θ∗)) that η′θ∗ is globally nonnegative, weakly quasiconcave with peak at θ∗,
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and not globally zero. In particular, ηθ∗(0) = 0 yields ηθ∗ ≥ 0 and ε := 1
2
ηθ∗(θ

∗) > 0.

Now, with the prior being atomless and ηθ∗ continuous, there is some θ∗ ∈ [0, θ∗) close

enough to θ∗ to ensure that ηθ∗(θ∗) ≥ ε and µ0(θ∗, θ
∗] ≤ ε. Let η := ηθ∗ .

As η′ is weakly quasiconcave on [0, 1] (with peak at θ∗), we have inf η′[0, 1] =

min{η′(0), η′(1)} = min{0, η′(1)}. But

η′(1) =

∫ θ∗

0

1 dµ0 −
∫ 1

0

χ dµ0 = µ0[0, θ∗]− µ0[0, θ∗] ≥ −ε,

so that η′|[0,1] ≥ −ε.
Let us now observe that η is nonnegative over [0, 1]. First, any θ ∈ [0, θ∗] has

η(θ) = ηθ∗(θ) ≥ 0. Next, any θ ∈ [θ∗, 1] has

η(θ) = η(θ∗) +

∫ θ

θ∗

η′(θ̃) dθ̃ ≥ ε+ (1− θ∗)(−ε) = θ∗ε > 0.

So I1[0,θ∗)µ0 ≥ Iχµ0 globally. Lemma 9 then implies that µ̄1[0,θ∗)
� µ̄χ. Finally, Claim

2 tells us that v∗1[0,θ∗)
(µ0) ≥ v∗χ(µ0). Meanwhile, the cost of credibility 1[0,θ∗), is strictly

below that of credibility χ.

Now, we prove Claim 3

Proof. Consider any credibility choice χ and accompanying χ-equilibrium. Lemma 16

shows that χ is a cutoff credibility choice with cutoff θ∗ ∈ [0, 1], or can be replaced

with one for a strict improvement to the objective. Our analysis of public persuasion

says that the χ-equilibrium entails influenced θ∗ upper censorship for some cutoff θ∗ ∈
[0, 1], or can be replaced with it for a strict improvement to the objective. Our main-

text observation on the endogenous credibility problem (that no gratuitous credibility

should be purchased) tells us that θ∗ ≤ θ∗, or else θ∗ can be lowered to θ∗ for a strict

gain to the objective. But then, since χ|[θ∗,1] = 0, it is purely a normalization to set

θ∗ = θ∗.

The above observations tell us that we may as well restrict to the case that there

is some cutoff θ∗ ∈ [0, 1] such that S invests in cutoff credibility choice with cutoff θ∗,

official reporting always reveals the state, and influenced reporting reveals itself but

provides no further information.
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Thus, S solves (where the argument for H on the right is taken to be 1 when θ∗ = 1)

max
θ∗∈[0,1]

∫ θ∗

0

H dµ0 − c (µ0[0, θ∗)) +H

(∫ 1

θ∗
θ dµ0(θ)

µ0[θ∗, 1]

)
.

This program is continuous with compact domain, so that an optimum exists.

B.5 Simple Communication: Proof from section 6.5

We begin with a lemma showing that the program (12) always admits a solution with

additional structure. In particular, whenever S-optimal χ-equilibrium requires the

official reporting protocol to differ from an influencing S’s behavior, we can assume

without loss that every message sent by official reporting is strictly suboptimal for an

influencing S.

Lemma 17. One of the following holds:

1. The triple (β, γ, k) = (µ0, µ0, 0) is an optimal solution to program (12);

2. Some optimal solution (β, γ, k) to program (12) and b ∈ R(β) exist with k > 0,∫
v∧γ db = v̂∧γ(β), and b{v < v̄(γ)} = 1.

Proof. As observed in (the SDC generalization of) Theorem 1, program (12) admits

some solution (β, γ, k). Further, some b ∈ R(β) exists with
∫
v∧γ db = v̂∧γ(β) because

R(β) is compact and b 7→
∫
v∧γ db is upper semicontinuous. Letting D := {v ≥

v̄(γ)} ⊆ ∆Θ, we have nothing to show if b(D) = 0, so suppose b(D) > 0.

Now, let k′ := k[1 − b(D)] ∈ [0, 1); let γ′ := 1
1−k′

[
(1− k)γ + k

∫
D
µ db(µ)

]
∈ ∆Θ;

and let β′ := 1
1−b(D)

∫
(∆Θ)\D µ db(µ) if b(D) < 1, and β′ := µ0 if b(D) = 1. Because

k′β′ + (1− k′)γ′ = kβ + (1− k)γ and (1− k′)γ′ ≥ (1− k)γ by construction, (β′, γ′, k′)

is feasible in (12). In what follows, we show that (β′, γ′, k′) is an optimal solution to

(12) with the desired features.

First, by construction, γ′ is in the closed convex hull of {v̄ ≥ v̄(γ)}. But {v̄ ≥ v̄(γ)}
is closed and convex because v̄ is upper semicontinuous and quasiconcave, implying

v̄(γ′) ≥ v̄(γ). If k′ = 0 (in which case β′ = γ′ = µ0 by construction), this ranking

implies v̄(γ′) ≥ (1 − k)v̄(γ) + kv̂∧γ(β), so that (β′, γ′, k′) is optimal too, establishing

the claim.
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We now focus on the remaining case that 0 < k′ < 1. That v̄(γ′) ≥ v̄(γ) implies

b′ := 1
1−b(D)

b ((·) ∩D) ∈ R(β′) has b′{v < v̄(γ′)} = 1. Moreover,

(1− k′)v̄(γ′) + k′v̂∧γ′(β
′) ≥ (1− k′)v̄(γ′) + k′

∫
v∧γ′ db

′

= [1− k + kβ(D)] v̄(γ′) + k′
∫
v∧γ′ db

′

= (1− k)v̄(γ′) + k

∫
v∧γ′ db

≥ (1− k)v̄(γ) + k

∫
v∧γ db.

Optimality of (β, γ, k) in (12) then implies (β′, γ′, k′) is optimal too. Therefore, the

inequalities in the above chain must hold with equality, whence the first line of the

above chain yields v̂∧γ′(β
′) =

∫
v∧γ′ db

′. Thus, (β′, γ′, k′) and b′ are as required.

Although our main purpose for the above lemma is to prove Proposition 4, it is

worth noting that Lemma 17 can be useful in narrowing the search for a solution to

Theorem 1’s program. For example, in the context of the central bank example, the

lemma immediately implies that (for any χ at which S can do strictly better than her

no-credibility value) one optimally sets β ≤ 1
4
.

We now proceed to prove the corollary.

Proof of Proposition 4. By Lemma 17, some optimal solution (β, γ, k) to program (12)

exists such that either (1) (β, γ, k) = (µ0, µ0, 0) or (2) k > 0, and some b̃ ∈ R(β) has∫
v∧γ db̃ = v̂∧γ(β) and b̃{v < v̄(γ)} = 1. Let si := v̄(γ).

In case 1, we will observe that some g ∈ R(µ0) exists with g{V 3 si} = 1 and

|supp(g)| is weakly below the given cardinality bound. In case 2, we will observe

that some b ∈ R(β) and g ∈ R(γ) exist with b{v < si} = g{V 3 si} = 1, and

|supp(b)| + |supp(g)| is weakly below the given cardinality bound. In either case, the

proof of Lemma 1 (applied with b = g in case 1) yields an S-optimal equilibrium that

respects the cardinality bound on on-path messages.

First, we prove the bound based on the number of actions. Letting A+ := {a ∈
A : uS(a) ≥ si}, (the proof of) Proposition 2 from Lipnowski and Ravid (2020)

delivers some g ∈ R(γ) such that g{V 3 si} = 1 and |supp(g)| ≤ |A+|. In case

1, nothing remains to show, so let us now focus on case 2. As b ∈ R(β) is such that

argmaxa∈A
∫
uR(a, ·) dµ ⊆ A\A+ a.s.-b(µ), (the proof of) Proposition 1 from Kamenica
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and Gentzkow (2011) delivers some b ∈ R(β) such that |supp(b)| ≤ |A \A+|.50 Hence,

some S-optimal χ-equilibrium (ξ, σ, α, π) exists in which some measurable M∗ ⊆ M

with |M∗| ≤ |A| has ξ(M∗|·) = σ(M∗|·) = 1.

Now, supposing n := |Θ| <∞, we prove the bound based on the number of states.

Lemma 1 of Lipnowski and Ravid (2020) implies γ is in the convex hull of the compact

set {V 3 si}, and then Caratheodory’s theorem says γ is in the convex hull of some

affinely independent subset D ⊆ {V 3 si}. Clearly, |D| ≤ n, so nothing remains to be

shown in case 1; let us now focus on case 2.

As |D| <∞, we can without loss remove elements from D to ensure γ is a proper

convex combination of all elements of D. By Choquet’s theorem, b̃ is the barycenter of

extreme points of R(b), which themselves must then be solutions to maxb∈R(β)

∫
v∧γ db.

Taking one such extreme point yields b ∈ extR(β) such that b{v < si} = 1 and∫
v∧γ db = v̂∧γ(β). Because extreme points of R(β) have affinely independent support,

it follows that |supp(b)| ≤ n. Hence, some S-optimal χ-equilibrium (ξ, σ, α, π) exists in

which some M∗ ⊆ M with |M∗| ≤ n + |D| has ξ(M∗|·) = σ(M∗|·) = 1. The corollary

then follows if we can establish (in case 2) that |D| < n.

Assume for a contradiction that |D| = n. Then the set of proper convex combi-

nations of all elements of |D| is an open subset of ∆Θ that contains γ. In particular,

some proper convex combination γ′ of γ and µ0 lies in the convex hull of |D|. Ob-

serve three properties of γ′. First, by construction, some k′ ∈ (0, k) exists such that

k′β + (1 − k′)γ′ = µ0. Second, quasiconcavity of v̄ implies v̄(γ′) ≥ min v̄(D) ≥ si.

Third,

(1− k′)γ′ = µ0 − k′β ≥ µ0 − kβ = (1− k)γ,

so that (β, γ′, k′) is feasible in program (12). Hence,

k′v̂∧γ′(β) + (1− k′)v̄(γ′) ≥ k′v̂∧γ(β) + (1− k′)si > kv̂∧γ(β) + (1− k)si,

contradicting the optimality of (β, γ, k).

50In both of the cited propositions, the result we use is proven in the cited paper, but not written in
the proposition’s statement. The proof of Proposition 2 from Lipnowski and Ravid (2020) shows that
any attainable equilibrium S payoff of the cheap talk game is a attainable in an equilibrium in which
every on-path message is a pure-action recommendation, and the recommended action is S’s preferred
action in the support of R’s (possibly mixed-action) response to that recommendation. The proof of
Proposition 1 from Kamenica and Gentzkow (2011) shows, given a communication protocol with R
best responding to Bayesian beliefs, that communication can be garbled to an incentive compatible
direct recommendation producing the same joint distribution of states and actions.
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