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Abstract

A sender commits to an experiment to persuade a receiver. Accounting for the sender’s
experiment-choice incentives, and not presupposing a receiver tie-breaking rule when
indifferent, we characterize when the sender’s equilibrium payoff is unique and so co-
incides with her “Bayesian persuasion” value. A sufficient condition in finite models is
that every action which is receiver-optimal at some belief is uniquely optimal at some
other belief—a generic property. We similarly show the equilibrium sender payoff is
typically unique in ordered models. In an extension, we show uniqueness generates ro-
bustness to imperfect sender commitment.
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1. The Setup

In recent years, many studies have explored variations on the Bayesian Persuasion model
of Kamenica and Gentzkow (2011), hereafter KG (see Bergemann and Morris, 2019; Ka-
menica, 2019, for review). In KG’s model, a receiver (R, he) must choose an action, but a
sender (S, she) controls R’s available information about a payoff-relevant state. When an-
alyzing this model and its variations, researchers usually assume S-favorable tie-breaking.
Whereas this assumption is without loss when evaluating the highest payoff S can get across
all information structures, making this assumption when using the model for prediction or de-
sign is tantamount to selecting S’s favorite equilibrium. Consequently, it is unclear whether
the model’s conclusions remain valid under other equilibrium selection criteria. In this pa-
per, we address this question by asking when tie-breaking assumptions are irrelevant. More
specifically, we ask: when is S’s equilibrium payoff unique?

To answer this question, we study KG’s model without imposing S favorable tie break-
ing. Thus, the game begins with S publicly committing to a Blackwell experiment about
the payoff-relevant state θ ∈ Θ, whose prior distribution is µ0 ∈ ∆Θ. Formally, S chooses a
measurable function ψ : Θ → ∆M for a given space M of messages. Then, after observing
both ψ and a realized message m ∈ M, the receiver chooses an action a from a set of feasible
actions A. Each player i ∈ {S ,R} seeks to maximize the expectation of an objective ui(a, θ).1

KG analyze this game using the S-favorite equilibrium concept. We diverge from this as-
sumption by considering all equilibria of the game, and ask when all these equilibria give S
the same payoff.

We defer a formal definition of equilibrium to the following section, but a brief overview
of KG’s analysis is in order. They adopt a belief-based approach, casting S’s optimization
problem as one of directly choosing p ∈ ∆∆Θ, the ex-ante distribution of R’s posterior
belief µ concerning the state. Because R is Bayesian (and S’s experiment choice is made
in ignorance of the state), it must be that p belongs to I(µ0), the set of belief distributions
with barycenter equal to the prior; KG term this condition Bayes plausibility. We refer to
elements of I(µ0) as information policies. But what payoff does S derive from a given
Bayes-plausible belief distribution? By R rationality, R will choose from his best responses
A∗R(µ) ⊆ A whenever her posterior belief is µ. S’s expected payoff from such an action

1We maintain the technical assumptions that both A and Θ are nontrivial compact metrizable spaces; that
the objectives uS , uR : A × Θ → R are continuous; that M is a Polish space; and either that M is uncountable
or that Θ is finite and |M| ≥ |Θ|. All topological spaces are viewed as measurable spaces with their Borel
sigma-algebra.
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a ∈ A∗R(µ) is then equal to
∫

uS (a, ·) dµ. Given KG’s focus on S-optimal equilibrium, they
can assume without loss that R always breaks any indifferences in S’s favor. Thus, KG can
summarize S’s payoff from inducing belief µ as v(µ) B maxa∈A∗R(µ)

∫
uS (a, ·) dµ. We call v

the value function. Hence, S’s best equilibrium value is given by v̂(µ0) = maxp∈I(µ0)

∫
v dp.

But what happens if R may choose best responses that differ from those S would prefer?
If, in the worst case, R always chooses S’s least favorite of his best responses, then from in-
ducing R belief µ, S can only expect a payoff of w(µ) B mina∈A∗R(µ)

∫
uS (a, ·) dµ. Accordingly,

S would have a profitable deviation if her payoff were ever strictly below

ŵ(µ0) = sup
p∈I(µ0)

∫
w dp.

As Wu (2022) has shown, this payoff lower bound is the only additional constraint imposed
by S’s experiment-choice incentives. Using this result, we go on to fully characterize when
S has a unique equilibrium payoff, and to provide meaningful sufficient conditions for the
same.

One can see the issues that arise without S-favorable tie-breaking by modifying KG’s
judge example. In their example, a binary state in Θ = {0, 1} summarizes whether a defendant
is innocent (θ = 0) or guilty (θ = 1). S is a prosecutor, who decides what information to
generate about this state, whereas R is a judge. In KG’s example, the judge makes a binary
decision as to whether to acquit (a = 0) or convict (a = 1) the defendant, and S always
wants the defendant convicted, whereas R wants to make the “just” choice, getting a utility
of 1 if her choice matches the state. Suppose we modify the example so that R has two
convict actions, a = 1 and a = −1, which differ in the defendant’s sentence. For example,
in a murder trial, a = 1 may represent sentencing the defendant to a life in prison, whereas
a = −1 represents giving the defendant the death penalty. Suppose the (American) judge
views both sentences as equivalent to each other, but the prosecutor views the death penalty
as immoral, and so prefers that the judge acquits the defendant rather than give him the death
penalty. For concreteness, suppose S’s preferences are given by uS (a, θ) = a, whereas R gets
a payoff of 1 if her sentencing choice matches the state (i.e., if |a| = θ), and 0 otherwise. For
our example, suppose the prior probability the defendant is guilty is µ0 = 0.25.

Figure 1 depicts the sender’s upper and lower value functions, v and w, as well as their
“concavifications”, v̂ and ŵ, for this example. As usual, the figure summarizes R’s belief by
the probability it assigns to θ = 1. Notice that v̂ , ŵ, and so S’s value would, in general,
depend on the tie-breaking rule. In fact, below we explain how different tie-breaking rules
lead to radically different conclusions about S’s equilibrium value and the information she
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Figure 1: The functions v,w, v̂, ŵ in the modified KG’s judge example.

chooses to release to R.
Suppose first that R always breaks ties in S’s favor. As KG explain, in this case S’s ex-

pected payoff conditional on R having a belief µ is equal to v(µ), and so S’s payoff from any
given information policy p is given by

∫
v dp. S’s value from the best information policy un-

der S-favorable equilibrium selection is then given by v̂(µ0). In this example, S’s equilibrium
payoff under S-favorable tie-breaking is v̂(µ0) = 0.5. The equilibrium information policy is
then p∗ = 0.5δ0 + 0.5δ0.5. This is the solution prescribed by the majority of the information
design literature. Note this payoff is strictly higher than 0, which is the utility S would get if
she revealed no information to R.

What if R were to break ties against S? In this case, S’s payoff from inducing a belief of
µ would be given by w(µ), and so S’s payoffs from p∗ would be equal to

0.5w(δ0) + 0.5w(δ0.5) = −0.5.

Notice this payoff is strictly below S’s no information payoff, which equals 0 under both
S-favorable and S-adverserial tie breaking. In fact, one can show that, under S-adversarial
tie-breaking, no information gives S her best equilibrium payoff. By contrast, if R breaks
ties against S, p∗ gives S the lowest payoff S can attain under any information policy, subject
to R’s incentive constraints.

As the above example demonstrates, multiplicity in S’s equilibrium value can result in
predictions that are highly sensitive to R’s tie-breaking rule. Our current paper provides
tools for identifying situations in which such sensitivity is not present by characterizing the
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environments in which S’s equilibrium value is unique.
We also apply our results to a model in which there are doubts about S’s ability to commit

to her experiment. Such doubts make the equilibrium selection question salient, since they
suggest S may lack the bargaining power required to dictate which equilibrium is played.
Section 4 introduces a model in which S’s commitment power is limited. Specifically, we add
a probability that S can covertly manipulate the experiment’s results ex-post. We characterize
S’s equilibrium payoff set as this probability vanishes, and apply our uniqueness results to
study robustness in that setting.

Related literature We contribute to the Bayesian persuasion literature (Aumann and Maschler,
1995; Kamenica and Gentzkow, 2011; Kamenica, 2019), which studies sender-receiver games
in which a sender commits to an information-transmission strategy. Our main goal is to
understand when KG’s sender payoff characterization still applies—taking her experiment-
choice incentives into account, and allowing the receiver to choose actions in a manner unfa-
vorable to the sender when he is indifferent. Our extension to the case in which the sender’s
commitment is imperfect extends the analysis of Lipnowski, Ravid, and Shishkin (2022) in
the same manner.2

Several papers introduce robustness considerations into information design problems
(e.g., Kosterina, 2022; Dworczak and Pavan, 2022). Within this literature, most relevant are
papers that study optimal information provision in multi-agent settings under planner-worst
equilibrium selection (e.g. Mathevet, Perego, and Taneva, 2020; Moriya and Yamashita,
2020; Oyama and Takahashi, 2020; Ziegler, 2020; Halac, Lipnowski, and Rappoport, 2022;
Morris, Oyama, and Takahashi, 2022; Li, Song, and Zhao, 2023; Inostroza and Pavan, 2023).
Our work provides conditions under which such a selection rule is irrelevant for the single-
agent case.

Our work is related to multiple distinct strands of the Bayesian persuasion literature that
explicitly account for sender incentives in choosing an experiment. The first is the literature
on competition in persuasion, in which multiple senders design flexible information either
simultaneously (Gentzkow and Kamenica, 2016, 2017; Au and Kawai, 2020; Ravindran and
Cui, 2022) or sequentially (Li and Norman, 2021; Wu, 2022) and must make individually
rational experiment choices in equilibrium. The most related paper from this set is Wu
(2022), which essentially proves Proposition 0.3 The second strand studies how experi-

2See also Min (2021), which develops a generalization of the limited-commitment model and shows some
credibility is better than no credibility in a leading example; and Fréchette, Lizzeri, and Perego (2022), which
studies communication outcomes in a laboratory experiment.

3A result complementary to our Proposition 2 was proven by Li and Norman (2021). They study persuasion
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ment constraints shape chosen information (e.g., Ichihashi, 2019; Perez-Richet and Skreta,
2022), whereas the third strand studies signaling and informed principal problems for infor-
mation design settings in which an experiment choice can reveal private information (e.g.,
Perez-Richet, 2014; Hedlund, 2017; Alonso and Câmara, 2018; Koessler and Skreta, 2022).4

Finally, beyond the Bayesian persuasion literature, work on sequential mechanism design
under limited commitment (e.g., Skreta, 2006; Doval and Skreta, 2022) accounts for a prin-
cipal’s incentives while her future beliefs play a prominent role in the analysis.

2. The Equilibrium Payoff Set

We now formally define an equilibrium concept for the persuasion game. Note two features
of the definition. First, while R must respond optimally to his belief, we make no direct
assumption concerning which best response he chooses when indifferent.5 Second we ex-
plicitly include an optimality condition for S at the experiment-choice stage. Note that the
latter condition would have no bite under S-favorable tie-breaking, and so is rarely included
in the literature.

Definition 1. Let Ψ denote the set of all measurable functions ψ̃ : Θ → ∆M (a.k.a. ex-

periments). A sender strategy is an experiment ψ ∈ Ψ; a receiver strategy is a function

α : M × Ψ → ∆A that is measurable in its first argument; and a receiver belief map is a

function π : M × Ψ → ∆Θ that is measurable in its first argument. A (perfect Bayesian)
equilibrium is a triple of such maps 〈ψ, α, π〉 such that

1. The sender’s choice satisfies

ψ ∈ argmaxψ̃∈Ψ

∫
Θ

∫
M

∫
A

uS (a, θ) dα(a|ψ̃,m) dψ̃(m|θ) dµ0(θ);

by multiple senders moving sequentially, assuming the receiver breaks ties in favor of the sender who moves
last. Specialized to the single sender case, their Proposition 3 implies that, assuming sender-favorable tie-
breaking, all equilibria result in the same state-contingent action distribution. Combined with our Proposition 2,
Li and Norman’s (2021) result implies that in generic finite environments, one gets behavioral uniqueness (in
addition to payoff uniqueness).

4In a sense, the literature on verifiable disclosure can be seen as a combination of the second and third strand,
with sender incentives being a key object of study and verifiable information being limited in a type-dependent
manner.

5Still, as we shall see, it will often be the case that mutual best response requires that R break indifferences
in S’s favor on the path of play, just as a recipient of a zero offer accepts the offer in the unique subgame-perfect
equilibrium of the ultimatum game.
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2. Every ψ̃ ∈ Ψ and m ∈ M have

α

(
argmaxa∈A

∫
Θ

uR(a, θ) dπ(θ|m, ψ̃)
∣∣∣∣∣ m, ψ̃

)
= 1;

3. Every ψ̃ ∈ Ψ, Borel M̂ ⊆ M, and Borel Θ̂ ⊆ Θ have∫
Θ

∫
M̂
π(Θ̂|m, ψ̃) dψ̃(m|θ) dµ0(θ) =

∫
Θ̂

ψ̃(M̂|θ) dµ0(θ).

In such a case, we say the induced equilibrium sender payoff is∫
Θ

∫
M

∫
A

uS (a, θ) dα (a|m, ψ) dψ(m|θ) dµ0(θ).

The interpretation is as follows. First, S publicly chooses an experiment ψ̃ ∈ Ψ.6 The
experiment then produces a message m ∈ M that R observes. Then, R updates his beliefs
according to the message and the chosen experiment, and chooses an action a ∈ A. We
require that S only choose experiments that maximize her expected payoffs, that R (having
seen the realized experiment and message) only choose actions that maximize his expected
payoffs with respect to his belief about the payoff state, and that R’s beliefs conform to
Bayesian updating.7

In what follows, we document the set of attainable equilibrium S payoffs, with a partic-
ular focus on understanding when it is unique.

Remark 1. Although our focus is on equilibrium S payoffs rather than behavior, our results

have natural implications for behavior as well. In particular, when S’s equilibrium payoff

is unique, our results imply that R breaks indifferences in S’s favor with probability 1 on

path in every equilibrium. Hence, in this case, the results of KG (and many subsequent

papers surveyed in Kamenica, 2019) are robust to allowing arbitrary tie-breaking for R and

accounting for S’s experiment-choice incentives.
6One could easily extend the model to allow S to mix over experiment choice. Doing so would entail

added notational burden but would have no effect on the resulting S payoff set because the experiment choice
is public, not informed by private information, and not simultaneous to any other decisions.

7Moreover, we assume that S cannot signal what she does not know. Indeed, our Bayesian condition implies
that every ψ̃ ∈ Ψ and Borel Θ̂ ⊆ Θ have

∫
Θ

∫
M π(Θ̂|m, ψ̃) dψ̃(m|θ) dµ0(θ) = µ0(Θ̂), so that the chosen experiment

alone does not cause belief updating by R about the payoff state.

7



2.1. Characterizing equilibrium payoffs

We begin by stating a characterization of the equilibrium S payoff set as a function of the
parameters of our game. This set is a compact interval, with highest value equal to KG’s
commitment solution, and lowest value equal to the supremum value S can guarantee when
R breaks her indifferences adversarially. In the special case in which the state space is finite,
this result is exactly Proposition 1 from Wu (2022). Although no substantive new arguments
are required for the general case, we include a proof for the sake of completeness.

Proposition 0 (Payoff set (Wu, 2022)). The set of equilibrium S payoffs is [ŵ(µ0), v̂(µ0)].

Necessity is essentially immediate, and the proof of sufficiency is constructive. By de-
grading information from an S-optimal (under favorable tie-breaking) experiment and al-
lowing for R to mix among optimal choices in the degraded experiment, one can find an
experiment for S to choose and R best response to target any payoff in the given interval.
Then, having R break indifference adversarially to S following off-path experiment choices
ensures that this experiment choice is indeed optimal for S.

Remark 2. It is apparent that Proposition 0 depends only on the value correspondence

V = [w, v], and moreover (as is clear from our proof) the only substantive property required

of the environment is that the attainable S payoffs from R responding optimally to a given

belief be convex.8 In addition to making Proposition 0 more tractable to apply, this feature

also expands its applicability beyond the basic model we have considered. For example, the

proposition can be applied to settings in which a receiver is subject to independent private

payoff shocks. Additionally, the proposition applies to public persuasion of a set of agents

who play a game, so long as the set of induced payoffs for the sender is convex for every

public belief. The latter condition holds, for instance, if the receivers observe a rich public

randomization device after the experiment choice (but before their gameplay).

Remark 3. In light of Proposition 0, S has a unique equilibrium payoff if and only if v and

w have the same “concavification,” and so too does any function z with w ≤ z ≤ v. We

can therefore frame our analysis as follows: When is the concavification of a sender’s value

function (evaluated at the prior) invariant to R’s tie-breaking rule?
8Our analysis also uses the fact that V is nonempty-compact-valued and upper hemicontinuous, and that the

set of optimal R choices is a weakly measurable correspondence of his belief.
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3. Equilibrium Payoff Uniqueness

In this section we ask, when does S have a unique equilibrium payoff? Whenever she does,
the traditional analysis that focuses on S-optimal equilibrium (and so assumes S-favorable
tie-breaking by R) is essentially without loss.

As a starting observation, because uniqueness follows directly from Proposition 0 when-
ever v = w, a sufficient condition for S to have a unique equilibrium payoff is immediate.

Corollary 1 (No relevant ties). S has a unique equilibrium payoff if, at any belief, S is

indifferent between all of R’s best responses.

Although restrictive, the above condition nevertheless captures many cases of interest.
For example, if the action space is a convex subset of some linear space with R’s payoff being
strictly concave in his action (e.g., Crawford and Sobel, 1982; Chakraborty and Harbaugh,
2010), then he has a unique best response to every belief, and so the corollary applies.

The following result gives an alternative sufficient condition for S to attain her Bayesian
persuasion value in all equilibria. It says such uniqueness holds if information can serve as
a stand-in for favorable tie-breaking at all relevant posterior beliefs. To state the result, the
following definition is useful.

Definition 2. Say a set D ⊆ ∆Θ is persuasion sufficient if

v̂(µ0) = sup
{∫

v dp : p ∈ I(µ0) s.t. p(D′) = 1 for some Borel D′ ⊆ D
}

In words, a set of beliefs D is persuasion sufficient if the KG payoff can be approximated
with policies supported within D under S-favorable tie-breaking.

As the following proposition says, if (on the relevant set of beliefs) information can be
used to replace favorable selection, then S guarantees her KG payoff.

Proposition 1 (Information as selection). S has a unique equilibrium payoff if ŵ|D ≥ v|D for

some persuasion-sufficient D ⊆ ∆Θ.9

To prove the proposition, we begin with an information policy supported on D that nearly
attains the KG payoff under S-favorable selection. For each realized posterior µ ∈ D, the
sender then provides additional information—further splitting the belief µ into some belief

9For a function f : ∆Θ→ R, we let f |D be the restriction of f to D; that is, the function from D to R defined
via µ 7→ f (µ).
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distribution centered on µ—to ensure a payoff of nearly v(µ) even under S-adversarial se-
lection. That ŵ ≥ v on D ensures one can find such a splitting for each µ, and a standard
measurable selection result says one can do so measurably.

Following directly from the above proposition, the next corollary exactly characterizes
when equilibrium S payoff uniqueness holds independent of the prior: such uniqueness is
equivalent to information always replicating favorable tie-breaking.

Corollary 2 (Global uniqueness). S has a unique equilibrium payoff for every prior (holding

other parameters fixed) if and only if ŵ ≥ v.

3.1. Sufficient conditions for uniqueness

The above conditions for payoff uniqueness were expressed in terms of the derived objects v,
w, v̂, and ŵ. These objects can be difficult to calculate. In this section, we develop alternative
sufficient conditions that ensure S has a unique equilibrium payoff.

Let AU ⊆ A denote the set of potentially unique best response actions, that is, a ∈ A such
that some µ ∈ ∆[supp µ0] has A∗R(µ) = {a}. For any belief µ̄ ∈ ∆Θ, let AU(µ̄) denote the set of
potentially unique best response actions at µ̄, that is, a ∈ A such that some µ ∈ ∆Θ has both
A∗R(µ) = {a} and εµ ≤ µ̄ for some ε > 0.10

Definition 3. Given µ ∈ ∆Θ, say the potentially unique best response (PUBR) property
holds at µ if11

max
a∈A∗R(µ)

∫
uS (a, ·) dµ = sup

a∈A∗R(µ)∩AU

∫
uS (a, ·) dµ;

and say the strong PUBR property holds at µ if

max
a∈A∗R(µ)

∫
uS (a, ·) dµ = sup

a∈A∗R(µ)∩AU (µ)

∫
uS (a, ·) dµ.

Given a set D ⊆ ∆Θ, say the (strong) PUBR property holds on D if it holds at every µ ∈ D.

The above property says that S can obtain a value arbitrarily close to her payoff un-
der favorable-selection with the receiver only using actions that are a unique best response
to some belief—and the strong version further requires that the latter belief be boundedly

10When we refer to inequalities for measures, we interpret the inequality pointwise. For instance, εµ ≤ µ̄
means εµ(Θ̂) ≤ µ̄(Θ̂) for every measurable Θ̂ ⊆ Θ.

11Note the left-hand side is just v(µ).
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absolutely continuous with respect to the relevant posterior belief.12

The next result shows various versions of the PUBR property are sufficient to guarantee
equilibrium selection.

Theorem 1 (The PUBR theorem13). S has a unique equilibrium payoff if either of the fol-

lowing two conditions holds for some persuasion-sufficient D ⊆ ∆Θ:

(i) The strong PUBR property holds on D.

(ii) The PUBR property holds on D, and either A or Θ is finite.

In particular, for full-support priors and finite states or finite actions, the theorem implies
S has a unique equilibrium payoff if every action is the unique best response to some belief.

For intuition, consider the case in which the state and action spaces are both finite and the
prior has full support, and let p be any Bayes-plausible belief distribution with finite support
D̃ satisfying the PUBR property. For any supported belief µ, the PUBR property implies
some action a is both (A) an S-preferred R best response to belief µ and (B) a unique R
best response to some alternative belief µ′µ. For any λ ∈ (0, 1), we can then define the belief
µ′µ,λ = λµ′µ + (1 − λ)µ, which also has a as a unique R best response by the linearity property
of expected utility. Define now the belief distribution pλ which modifies p by replacing each
supported µ with µ′µ,λ. This belief distribution is Bayes-plausible for the alternative prior
µλ = (1 − λ)µ0 + λ

∑
µ p(µ)µ′µ, which converges to µ0 as λ → 0. Moreover, because R has

a unique best response to every pλ-supported message, it follows that
∫

w dpλ converges to∫
v dp as λ → 0. Therefore, every limit point of ŵ(µλ) as λ → 0 is at least

∫
v dp. Finally,

the function ŵ is concave—for the exact same reason that the optimal value v̂ is—and so is
continuous at the relatively interior point µ0 of its domain. Hence, ŵ(µ0) ≥

∫
v dp, delivering

the result.
There are two hurdles to generalizing the above argument to more general action and state

spaces. The first hurdle is that for some beliefs, there may be no action that satisfies both (A)
and (B) above. To circumvent this issue, we replace (B) with the requirement that the action
can be approximated by actions that are unique R-best responses at some alternative beliefs.
The second hurdle is that, with infinite states, ∆Θ has an empty interior when viewed as a

12Note, the PUBR property is strictly stronger than the requirement that R has no duplicate actions. The
latter condition is insufficient for ensuring uniqueness, as witnessed by A = Θ = {0, 1}, µ0 = 1

2 , uS (a, θ) = −a,
and uR(a, θ) = aθ. The condition is reminiscent of the refined best reply correspondence that Balkenborg, Hof-
bauer, and Kuzmics (2013) and Balkenborg, Hofbauer, and Kuzmics (2015) study in finite games of complete
information.

13Cf. Milne (1926).
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subset of the set of all countably additive measures. Consequently, ŵ may be discontinuous
at the prior. To overcome this challenge, we employ a construction that holds the prior fixed.
We refer the reader to the appendix for the exact details.

Our next result uses Theorem 1 to show unique equilibrium S payoffs are a generic
feature of finite environments.

Proposition 2 (Generic uniqueness). If A and Θ are finite, then an open dense UR ⊆ R
A×Θ

of full Lebesgue measure exists such that S has a unique equilibrium payoff (for any prior

and any S preferences) as long as uR ∈ UR.

The proposition’s proof shows that global PUBR is generic. Intuitively, a failure of
PUBR at some belief implies that, for some fixed action and fixed set of states, R’s highest
possible expected payoff gain from using said action rather than his best other action is
exactly zero—a knife-edge condition.

The above proposition, which makes no structural assumptions on players’ payoffs, is
completely silent on infinite persuasion models. Meanwhile, papers applying the Bayesian
persuasion framework (e.g., Kolotilin et al., 2017; Kolotilin, 2018; Dworczak and Martini,
2019; Guo and Shmaya, 2019) often focus on settings in which the state space, action space,
or both are infinite.14 Because many such models are in some sense one-dimensional, we
next turn our attention to specifications enjoying some ordinal structure.

Definition 4. Say the environment is ordered if A,Θ ⊆ R; the function uR exhibits strictly

increasing differences; and every µ ∈ ∆Θ has either
∫

uR(a, ·) dµ strictly quasiconcave in

a ∈ A or
∫

uS (a, ·) dµ weakly quasiconvex in a ∈ A.15

The above condition says that the action space and state space are both subsets of the
real line, and that preferences respect this ordered structure. The increasing-differences con-
dition says that R would like to take higher actions in higher states, and the quasiconvex-
ity/quasiconcavity condition (which for instance holds if the the first-order approach is valid
in determining R’s optimal behavior, or if S always prefers higher actions) ensures that S

14Moreover, in a setting in which R has private information and takes a binary action, such as Kolotilin et al.
(2017), public persuasion can be reinterpreted as a continuous-action model in which R chooses a cutoff type
at which to take the high action.

15The quasiconcavity condition says that any aL, aM , aH ∈ A with aL < aM < aH have
∫

uR(aM , ·) dµ >

min
{∫

uR(aL, ·) dµ,
∫

uR(aH , ·) dµ
}
. This condition holds vacuously with binary actions, holds if uR is strictly

concave in its first argument, and holds if uR is the restriction of a function A × co Θ → R that is strictly
quasiconcave in its first argument and affine in its second. Similarly, the quasiconvexity condition holds if uS is
weakly convex or weakly monotone in its first argument, or if uS is the restriction of a function A × co Θ→ R
that is weakly quasiconvex in its first argument and affine in its second.
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always prefers either R’s highest or lowest best response. Note, the assumption that the envi-
ronment is ordered is silent on whether R has unique best responses, on whether preferences
are affine in R’s posterior belief, and on whether the state or action space is finite or infinite.

The next result shows that, except under a specific knife-edge condition (on R’s prefer-
ences and the prior), S has a unique equilibrium payoff. In particular, the result says S has a
unique equilibrium payoff in ordered models with an atomless prior.

Theorem 2 (Uniqueness in the ordered model). Suppose the environment is ordered; and for

each θ̄ ∈ {min supp µ0, max supp µ0}, either µ0(θ̄) = 0 or R’s best response at δθ̄ is unique.

Then, S has a unique equilibrium payoff.

For a proof sketch, it is useful to consider the case in which A is finite. In this special case,
one can derive payoff uniqueness as a consequence of Theorem 1.16 We need to argue that the
PUBR property holds at any belief µ supported by an information policy. Given our generic
assumption on the prior, we only need to worry about the case of beliefs at which R is neither
certain of the highest state nor certain of the lowest state. The quasiconcavity/quasiconvexity
condition of ordered models implies that S prefers either S’s highest or lowest best response
at µ—say the highest. But then the degenerate belief on the highest state is a valid witness
to the PUBR property: slightly increasing the probability on the high state breaks any R
indifference in S’s preferred direction, because of the increasing differences hypothesis. To
prove Theorem 2 in the general case, a qualitatively similar argument applies (though one
cannot appeal to Theorem 1). This argument relies on the model’s continuity hypotheses.
Instead of perturbing beliefs in the direction of a degenerate belief, we do so in the direction
of a conditional belief of the prior conditional on the state exceeding a high cutoff; and
instead of ensuring an action is selected as a unique best response, we ensure that all R best
responses are very near to the targeted action.

To conclude the section, we provide two examples in which our two theorems make it
straightforward to verify S’s equilibrium payoff is unique (without knowing v̂(µ0) or ŵ(µ0)).

Example 1. Suppose A ⊆ Θ ⊂ Rd for some dimension d ∈ N, where A is finite (but Θ can be

finite or infinite), and suppose R’s utility takes the form uR(a, θ) = −‖a − θ‖2. For any full-

support prior and any S preferences, the PUBR property holds on ∆Θ because each a ∈ A is

the unique best response to the degenerate belief δa ∈ ∆Θ. Thus, Theorem 1 applies directly,

and S has a unique equilibrium payoff.
16In the general case, Theorem 2 does not follow directly from Theorem 1. However, the two results are

related. In the appendix, we prove a technical sufficient condition (Lemma 4) on the functions v and w, which
serves as a key input to both theorems.
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Example 2. Suppose A ⊂ R+, Θ ⊂ [1,∞), the prior is atomless, R’s utility takes the form

uR(a, θ) = θa − c(a) for some c : A → R, and uS is increasing in its first argument. This

environment is ordered, with strictly increasing differences following from

∂

∂a
∂

∂θ
uR(a, θ) = θa−1(1 + a log θ) > 0.

Thus, Theorem 2 applies directly, and S has a unique equilibrium payoff.

4. Limited Commitment

One way of arguing in favor of sender-favorite equilibrium selection is to assert that a prin-
cipal with full commitment power should also have the ability to steer others towards her
favorite equilibrium. This argument, however, may appear less compelling in settings with
a weaker sender, such as when the sender’s ability to commit is compromised. In this sec-
tion, we show how to apply our results to such settings by extending the model to one in
which S has only limited commitment power, as modeled in Lipnowski, Ravid, and Shishkin
(2022)—hereafter LRS1. To do so, we first specialize the existing parameters of our envi-
ronment for tractability:

Assumption 1. The spaces A, Θ, and M are all finite with |M| ≥ 2|Θ|, and uS is state

independent (i.e., constant in its second argument).

In mild abuse of notation, write uS : A → R. In addition to the parameters of our baseline
model, we parameterize our limited-commitment model by χ ∈ [0, 1], which denotes the
sender’s credibility.

The augmented game begins with S provisionally choosing an experiment, ψ : Θ→ ∆M,
an “official” report. The state θ ∈ Θ then realizes and, independent of the state, one of
two possibilities occurs. With probability χ, the message m ∈ M is sent in accordance with
the report, and so is distributed according to ψ(·|θ). With complementary probability 1 − χ,
reporting is “influenced” and so S observes θ and can freely choose m ∈ M. Crucially, R
observes the message m but observes neither θ nor whether reporting was influenced.

In what follows, we formalize an appropriate solution concept for the game with com-
promised reporting (again taking experiment-choice incentives into account), provide a re-
sult comparing the S equilibrium payoff set to that under perfect commitment, and apply our
uniqueness results to address robustness to imperfect credibility.
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4.1. The equilibrium payoff set

We formalize the solution concept for the augmented game as follows.

Definition 5. A sender strategy is a pair (ψ, σ) consisting of an experiment ψ ∈ Ψ and a

measurable function σ : Θ ×Ψ→ ∆M; a receiver strategy is a measurable function α : M ×

Ψ → ∆A; and a receiver belief map is a measurable function π : M × Ψ → ∆Θ. A perfect
Bayesian χ-equilibrium (χ-PBE) is a quadruple of such maps 〈ψ, σ, α, π〉 such that

1. The sender’s experiment choice satisfies

ψ ∈ argmaxψ̃∈Ψ

∫
Θ

∫
M

∫
A

uS dα(·|m, ψ̃)
[
χ dψ̃(m|θ) + (1 − χ) dσ(m|θ, ψ̃)

]
dµ0(θ);

2. Every ψ̃ ∈ Ψ and m ∈ M have

α

(
argmaxa∈A

∫
Θ

uR(a, θ) dπ(θ|m, ψ̃)
∣∣∣∣∣ m, ψ̃

)
= 1;

3. Every ψ̃ ∈ Ψ, Borel M̂ ⊆ M, and Borel Θ̂ ⊆ Θ have∫
Θ

∫
M̂
π(Θ̂|·, ψ̃) d

[
χψ̃(·|θ) + (1 − χ)σ(·|θ, ψ̃)

]
dµ0(θ) =

∫
Θ̂

[
χψ̃(M̂|·) + (1 − χ)σ(M̂|·, ψ̃)

]
dµ0;

4. Every ψ̃ ∈ Ψ and θ ∈ Θ have

σ

(
argmaxm∈M

∫
A

uS (a) dα(a|ψ̃,m)
∣∣∣∣∣ θ, ψ̃) = 1.

In such a case, we say the induced χ-PBE payoff is∫
Θ

∫
M

∫
A

uS (a) dα (a|m, ψ)
[
χ dψ(m|·) + (1 − χ) dσ(m|·, ψ)

]
dµ0.

Let w∗χ(µ0) denote the infimum χ-PBE payoff for S.

We begin our analysis of this richer model with a partial description of the range of
χ-PBE payoff for S. With full credibility, the range of S payoffs is naturally identical to the
game without an influencing stage (as influence occurs with zero probability): one completes
the equilibrium by incorporating some best response for an influencing S. But which payoffs
can S attain when unable to perfectly commit? With S-favorable selection, and ignoring
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experiment-choice incentives, it is nearly immediate that higher credibility can only help S:
she could always use her additional commitment power to replicate the way should would
behave without it. But the effect of credibility is less clear when one considers S incentives
and the full range of equilibria. First, the above replication argument is only available if S
finds it optimal to mimic her hypothetical influencing behavior. Second, because influencing
S is subject to incentive constraints more often under lower credibility, it is natural to wonder
whether her incentive constraints would refine away some bad equilibria.

The following result shows that, in spite of these concerns, lower credibility is in fact
worse for S than full commitment power in a set-valued sense.17

Proposition 3 (Payoff set under partial credibility). The set of χ-PBE payoffs for S is nonempty

and weakly below [ŵ(µ0), v̂(µ0)] in the strong set order, coinciding with it for χ = 1.

The part of the proposition for χ = 1 is straightforward. We now briefly summarize the
proof showing S’s χ-PBE payoffs lies below [ŵ(µ0), v̂(µ0)] when χ < 1. Our explanation
takes existence of a χ-PBE as given. As a starting point, note that additional incentive con-
siderations can only constrain S, and so no χ-PBE payoff can be greater than v̂(µ0). Now,
fix any χ < 1, and let v∗χ(µ0) be the highest χ-PBE payoff for S. If v̂χ were below ŵ(µ0), the
desired set ranking immediately follows. Suppose then that v∗χ(µ0) > ŵ(µ0). In this case,
we argue that every payoff between ŵ(µ0) and v∗χ(µ0) is compatible with χ-PBE. For a rough
sketch, consider first S’s set of attainable payoffs if we ignored her experiment-choice incen-
tives. Since one can always pair an uninformative official report with a babbling equilibrium,
this set is always includes w(µ0). Moreover, this set is an interval, by Lemma 7 in LRS1.
Since w(µ0) ≤ ŵ(µ0), it follows the set of payoffs S can obtain ignoring experiment-choice
incentives is an interval whose lower bound is weakly below ŵ(µ0).

Given the above, to prove the proposition, it is sufficient to claim that for any experi-
ment S could initially choose, some continuation equilibrium gives S a payoff of no more
than ŵ(µ0). This claim would follow immediately from the definition of ŵ if R were to
choose adversarially to S whenever he is indifferent between multiple actions. However,
it is unclear whether a continuation equilibrium with the latter feature exists, since w is not
continuous (hence, not upper semicontinuous)—hence S-adversarial tie-breaking by R could
mean S does not have any optimal message to send when allowed to influence the state. To
resolve this issue, we search for a continuation equilibrium in which R gives S a continua-
tion payoff in [w(µ), z(µ)] whenever his posterior belief is µ, where z is the smallest upper
semicontinuous function above w (and so z ≤ v). Because the correspondence [w, z] is upper

17Note, the proposition also establishes that a χ-PBE exists.
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hemicontinuous, an appropriate application of Kakutani’s fixed point theorem delivers such
continuation play and beliefs. This continuation play generates an S payoff of at most ẑ(µ0)
by KG’s results, where ẑ is the concave envelope of z. Finally, because the concave function
ŵ on a finite-dimensional simplex is automatically continuous on the interior, we can show
that the concave envelopes ẑ and ŵ agree at the prior.

4.2. Strong robustness

LRS1 establishes a robustness result (Proposition 3 of that paper) concerning the best S
payoff attainable when credibility is only slightly imperfect (χ ≈ 1)—but maintaining the
assumption of S-favorable equilibrium selection. That result implies her highest attainable
payoff converges to the Bayesian persuasion value for most payoff specifications. Our inter-
pretation of this result is that S’s value from persuasion is typically robust to limited credibil-
ity if she can also select the equilibrium. As explained earlier, though, when S’s credibility
is compromised, one may doubt that she can coordinate R towards her favorite equilibrium.
In this section, we revisit the robustness question of LRS1, without assuming S can choose
her favorite equilibrium when her credibility is imperfect. In particular, we show that S pay-
offs are robust to slightly imperfect credibility and equilibrium selection if and only if they
are robust to equilibrium selection in the full-credibility case. With this result in hand, the
results of the previous sections apply directly to address this stronger form of robustness in
persuasion models.

Proposition 4 (Strong robustness). The lowest χ-PBE values satisfy limχ↗1 w∗χ(µ0) = ŵ(µ0).
In particular, the Bayesian persuasion value is strongly robust to partial credibility (limχ↗1 w∗χ(µ0) =

v̂(µ0)) if and only if it is robust to equilibrium selection (ŵ(µ0) = v̂(µ0)).

The proof constructs lower payoff bounds for S in any χ-PBE by computing her payoff
following viable deviations, and shows that these payoff bounds can be made arbitrarily
close to ŵ(µ0) as credibility becomes arbitrarily close to perfect. In brief, we consider the
deviation to an experiment that would be approximately optimal under full S commitment
when R breaks ties against S’s interests. Using lower semicontinuity of w, we show S attains
a payoff approximating her full-commitment payoff from this experiment as χ approaches
1, because the belief a message induces is very nearby the full-commitment version of the
same.

Finally, Propositions 2 and 4 immediately yield the following conclusion.
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Corollary 3 (Generic strong robustness). For any finite A and Θ, for all but a Lebesgue-null

(and nowhere dense) set of R objectives uR ∈ R
A×Θ, and every S objective uS ∈ R

A, the full

commitment value is strongly robust to partial credibility.

Thus, for most payoff specifications, S obtains essentially her Bayesian persuasion payoff
in any equilibrium, even if her ability to commit to the information she provides is slightly
imperfect.

A. Proofs
Before proceeding to formal proofs, we review for convenience several key notations.

A∗R : ∆Θ ⇒ A

µ 7→ argmaxa∈A

∫
uR(a, ·) dµ

V : ∆Θ ⇒ R

µ 7→ co
{∫

uS (a, ·) dµ : a ∈ A∗R(µ)
}

v : ∆Θ → R

µ 7→ max V(µ)
w : ∆Θ → R

µ 7→ min V(µ)
I : ∆Θ ⇒ ∆∆Θ

µ 7→

{
p ∈ ∆∆Θ :

∫
µ̃ dp(µ̃) = µ

}
v̂ : ∆Θ → R

µ 7→ max
p∈I(µ)

∫
v dp

ŵ : ∆Θ → R

µ 7→ sup
p∈I(µ)

∫
w dp.

Note (appealing to Berge’s theorem and to continuity of the barycenter map) that all three
correspondences are nonempty-compact-valued and upper hemicontinuous, the functions v
and v̂ are upper semicontinuous, and the function w is lower semicontinuous.

A.1. Proofs for Section 2
The following lemma shows information policies can be replaced with payoff-equivalent
ones of small support when the state space is finite.
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Lemma 1. If Θ is finite, then any µ̄ ∈ ∆Θ, Borel D ⊆ ∆Θ, bounded measurable f : ∆Θ→ R
and p ∈ I(µ̄) ∩ ∆D admit some q ∈ I(µ̄) ∩ ∆D with supp(q) affinely independent (hence of
cardinality no greater than |Θ|) and

∫
f dq ≥

∫
f dp.

Proof. The set I(µ̄) is convex compact metrizable, and so Choquet’s theorem yields some
Q ∈ ∆[I(µ̄)] with barycenter p such that Q is supported on the extreme points of I(µ̄). But
this set ext[I(µ̄)] consists exactly of those q ∈ I(µ̄) with affinely independent support.

By definition of the barycenter,
!

g dq dQ(q) =
∫

g dp for every continuous g : ∆Θ→ R.
However, because the barycenter of this Q is unique, it follows that p(B) =

∫
q(B) dQ(q) for

every Borel B ⊆ ∆Θ. Hence, Q(∆D) = 1 because p(D) = 1, and
!

g dq dQ(q) =
∫

g dp for
every bounded measurable g : ∆Θ→ R—in particular for g = f .

Letting J B ext[I(µ̄)] ∩ ∆D, we have Q(J) = 1. Therefore,

0 =

"
f dq dQ(q) −

∫
f dp =

∫
J

[∫
f dq −

∫
f dp

]
dQ(q).

So the integrand is somewhere nonnegative: some q ∈ J has
∫

f dq ≥
∫

f dp. �

Now, we prove the characterization of all S equilibrium payoffs.

Proof of Proposition 0. To begin, we recall some well-known facts about experiments and
Bayesian updating—which collectively tell us that S choosing from Ψ and choosing from
I(µ0) are equivalent formalisms. First, any experiment ψ̃ ∈ Ψ admits some compatible
belief map, that is, some measurable π̃ = π̃ψ̃ : M → ∆Θ such that every Borel M̂ ⊆ M and
Borel Θ̂ ⊆ Θ have

∫
Θ

∫
M̂
π̃(Θ̂|m, ψ̃) dψ̃(m|θ) dµ0(θ) =

∫
Θ̂
ψ̃(M̂|θ) dµ0(θ). Second, given ψ̃ ∈ Ψ

if we define the belief distribution pψ̃,π̃ ∈ ∆∆Θ via pψ̃,π̃(D) B
∫

Θ
ψ̃

(
π̃−1(D)

∣∣∣ θ) dµ0(θ) for
each Borel D ⊆ ∆Θ, then pψ̃,π̃ = pψ̃,π̃′ for any two such compatible π̃ and π̃′. We therefore
refer to the associated belief distribution simply as pψ̃. Third, every ψ̃ ∈ Ψ has pψ̃ ∈ I(µ0).
Fourth, every p ∈ I(µ0) with | supp(p)| ≤ |M| admits some ψ̃p ∈ Ψ such that pψ̃p

= p.
Now we proceed to show s ∈ [ŵ(µ0), v̂(µ0)] is necessary and sufficient for s to be an

equilibrium S payoff.
First, to see the condition is necessary, fix an arbitrary equilibrium 〈ψ, α, π〉, and let s ∈ R

be the induced S payoff; we will show s ∈ [ŵ(µ0), v̂(µ0)]. For any ψ̃ ∈ Ψ and m ∈ M the
R optimality condition implies α

(
A∗R

(
π(·|m, ψ̃)

) ∣∣∣∣ m, ψ̃
)

= 1, so that
∫

A
uS (a, θ) dα

(
a
∣∣∣m, ψ̃) ∈

V
(
π(·|m, ψ̃)

)
. Therefore, any ψ̃ ∈ Ψ has∫

Θ

∫
M

∫
A

uS (a, θ) dα(a|m, ψ̃) dψ̃(m|θ) dµ0(θ) ∈
∫

Θ

∫
M

V
(
π(·|m, ψ̃)

)
dψ̃(m|θ) dµ0(θ)

=

∫
∆Θ

V dpψ̃

=

[∫
∆Θ

w dpψ̃,
∫

∆Θ

v dpψ̃

]
⊆

[∫
∆Θ

w dpψ̃, v̂(µ0)
]
.
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Hence, s ≤ v̂(µ0). Moreover, for any p ∈ I(µ0) if Θ is infinite, and for any p ∈ I(µ0) such
that | supp(p)| ≤ |Θ| if Θ is finite, taking ψ̃ = ψ̃p implies (by S rationality)∫

Θ

∫
M

∫
A

uS (a, θ) dα(a|m, ψ) dψ(m|θ) dµ0(θ)

≥

∫
Θ

∫
M

∫
A

uS (a, θ) dα(a|m, ψ̃) dψ̃(m|θ) dµ0(θ)

≥

∫
∆Θ

w dp.

Applying this observation to every such p (and applying Lemma 1 if Θ is finite) implies
s ≥ ŵ(µ0).

Conversely, take any s ∈ [ŵ(µ0), v̂(µ0)]. Letting p1 ∈ I(µ0) with
∫

∆Θ
v dpv = v̂(µ0) and

| supp(pv)| ≤ |Θ| if Θ is finite—which exists by Lemma 1—define pλ B
∫
δλµ+(1−λ)µ0 dp1(µ) ∈

I(µ0) for each λ ∈ [0, 1]; observe | supp(pλ)| ≤ | supp(p1)| ≤ |M|. As λ 7→ pλ is continuous,
it follows that the λ 7→

∫
V dpλ is nonempty-compact-convex-valued and upper hemicontin-

uous because V is. Moreover,∫
V dp0 = V(µ0) 3 w(µ0) ≤ s ≤ v̂(µ0) ∈

∫
V dp1.

The intermediate value theorem for correspondences (e.g., Lemma 2 from de Clippel, 2008)
therefore delivers some λ ∈ [0, 1] such that s ∈

∫
V dpλ. Some measurable ζ : ∆Θ → [0, 1]

then exists such that s =
∫ [

(1 − ζ)w + ζv
]

dpλ. By the measurable maximum theorem (The-
orem 18.19 from Aliprantis and Border, 2006), a pair of measurable functions αw, αv : ∆Θ→

∆A exist such that, each µ ∈ ∆Θ has
∫

A×Θ
uS d

[
αw(·|µ) ⊗ µ

]
= w(µ),

∫
A×Θ

uS d
[
αv(·|µ) ⊗ µ

]
=

v(µ), and αw

(
A∗R(µ)

∣∣∣µ) = αv

(
A∗R(µ)

∣∣∣µ) = 1. With these objects in hand, we can define our
candidate ψ : Θ→ ∆M, α : M × Ψ→ ∆A, and π : M × Ψ→ ∆Θ via

ψ(·|θ) B ψ̃pλ

π(·|m, ψ̃) B π̃ψ̃(·|m)

α(·|m, ψ̃) B

(1 − ζ)αw

(
·
∣∣∣ π(·|m, ψ̃)

)
+ ζαv

(
·
∣∣∣ π(·|m, ψ̃)

)
: ψ̃ = ψ̃pλ

αw

(
·
∣∣∣ π(·|m, ψ̃)

)
: ψ̃ , ψ̃pλ .

It is immediate from the construction that all three maps are measurable and that R rational-
ity and the Bayesian property are both satisfied. Moreover, direct computation shows that
choosing experiment ψ̃ ∈ Ψ gives S a continuation payoff of∫

Θ

∫
M

∫
A

uS (a, θ) dα(a|m, ψ̃) dψ̃(m|θ) dµ0(θ) =

s : ψ̃ = ψ̃pλ∫
∆Θ

w dpψ̃ : ψ̃ , ψ̃pλ

Therefore, S gets payoff s if the triple is an equilibrium. Finally, the triple is indeed an
equilibrium: In particular, S rationality is confirmed because s ≥ ŵ(µ0) ≥

∫
w dpψ̃ for every

alternative ψ̃ ∈ Ψ. �
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A.2. Proofs for Section 3
Lemma 2. The function ŵ : ∆Θ → R is lower semicontinuous (hence measurable) and
concave, and every p̄ ∈ I(µ0) has ŵ(µ0) ≥

∫
ŵ dp̄.

Proof. First, the function ∆∆Θ→ R given by p 7→
∫

w dp is lower semicontinuous because
w is. Moreover, the barycenter map ∆∆Θ → ∆Θ is open (O’Brien, 1976, Corollary 1),
meaning I is lower hemicontinuous. It follows from (Aliprantis and Border, 2006, Lemma
17.29) that ŵ is lower semicontinuous. In the next paragraph we establish the last assertion
in the lemma’s statement. Specializing that assertion to the case where p̄ has finite support
(and varying µ0) delivers that ŵ is concave. The lemma follows.

Fix an arbitrary information policy p̄ ∈ I(µ0) and ε > 0; we want to show ŵ(µ0) ≥∫
ŵ dp̄ − ε. To that end, define the correspondence

Φ : ∆Θ ⇒ ∆∆Θ

µ 7→

{
p ∈ I(µ) :

∫
w dp ≥ ŵ(µ) − ε

}
.

This correspondence is nonempty-valued by definition of ŵ, and has measurable graph be-
cause ŵ is measurable and the barycenter map p 7→

∫
µ dp(µ) is continuous (hence mea-

surable). Therefore, Corollary 18.27 from Aliprantis and Border (2006) yields a measurable
function ϕ : ∆Θ→ ∆∆Θ with p̄{ϕ ∈ Φ} = 1. Because p̄ ∈ I(µ0) and p̄{ϕ ∈ I} = 1, we know
p B

∫
ϕ dp̄ is in I(µ0). Therefore,

ŵ(µ0) ≥
∫

w dp =

"
w dϕ(·|µ) dp̄(µ) ≥

∫
(ŵ − ε) dp̄ =

∫
ŵ dp̄ − ε

The lemma follows. �

Proof of Proposition 1. Let ID(µ0) be the set of all information policies p ∈ I(µ0) such that
p(D̃) = 1 for some measurable D̃ ⊆ D. Because D is persuasion sufficient and ŵ|D ≥ v|D,
and by Lemma 2, we have:

v̂(µ0) = sup
p∈ID(µ0)

∫
v dp ≤ sup

p∈ID(µ0)

∫
ŵ dp ≤ ŵ(µ0).

The proposition follows. �

Proof of Corollary 2. By Proposition 0, it suffices to show that ŵ = v̂ if and only if ŵ ≥ v.
As it is immediate that v̂ ≥ ŵ and v̂ ≥ v, we need only see that ŵ ≥ v̂ if ŵ ≥ v. But this result
follows directly from Proposition 1, because ∆Θ is vacuously persuasion sufficient. �

Lemma 3. Suppose D ⊆ ∆Θ is measurable, p ∈ I(µ0) has p(D) = 1, and f : ∆Θ → R
is bounded and measurable. Suppose every µ̄ ∈ D admits some µ ∈ ∆Θ and γ > 0 such
that γµ ≤ µ̄ and all sufficiently small λ ∈ (0, 1] have ŵ (λµ + (1 − λ)µ̄) ≥ f (µ̄). Then
ŵ(µ0) ≥

∫
f dp.
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Proof. If we establish ŵ|D ≥ f |D, the lemma will follow from Lemma 2, because we will
have ŵ(µ0) ≥

∫
ŵ dp ≥

∫
f dp. So take any µ̄ ∈ D, with a view to showing ŵ(µ̄) ≥ f (µ̄).

Let µ ∈ ∆Θ and γ > 0 be as guaranteed by the lemma’s statement. Assuming without
loss that γ ∈ (0, 1), let µ′ B µ̄−γµ

1−γ ∈ ∆Θ so that µ̄ = γµ + (1 − γ)µ′. Then any sufficiently
small γ ∈ (0, 1] has

µ̄ =
γ

γ+λ(1−γ)

[
λµ + (1 − λ)µ̄

]
+

λ(1−γ)
γ+λ(1−γ)µ

′

=⇒ ŵ(µ̄) ≥
γ

γ+λ(1−γ)ŵ (λµ + (1 − λ)µ̄) +
λ(1−γ)
γ+λ(1−γ)ŵ(µ′) (by Lemma 2)

≥
γ

γ+λ(1−γ) f (µ̄) +
λ(1−γ)
γ+λ(1−γ) min uS (A × Θ)

→ f (µ̄) as λ→ 0.

Thus, ŵ(µ̄) ≥ f (µ̄), delivering the lemma. �

Lemma 4. Suppose D ⊆ ∆Θ is measurable, p ∈ I(µ0) has p(D) = 1, and f : ∆Θ → R
is bounded and measurable. Suppose every µ̄ ∈ D admits some µ ∈ ∆Θ and γ ∈ (0, 1)
such that γµ ≤ µ0 and all sufficiently small λ ∈ (0, 1] have ŵ (λµ + (1 − λ)µ̄) > f (µ̄). Then,
ŵ(µ0) ≥

∫
f dp.

Proof. Define the correspondences

F : D ⇒ ∆Θ

µ̄ 7→ {µ ∈ ∆Θ : ŵ(µ) > f (µ̄)}
G : D ⇒ ∆Θ

µ̄ 7→
{
µ ∈ ∆Θ : λµ + (1 − λ)µ̄ ∈ F(µ̄) ∀ sufficiently small λ ∈ (0, 1]

}
H : D ⇒ ∆Θ × (0, 1)

µ̄ 7→ {(µ, ζ) ∈ G(µ̄) × (0, 1) : ζµ ≤ µ0} .

By hypothesis, H is nonempty-valued. At the end of this proof, we shall show that H has
measurable graph. Before doing so, let us establish the lemma taking this fact for granted.

Extend H to H : ∆Θ ⇒ ∆Θ × (0, 1) by letting H(µ̄) B ∆Θ × (0, 1) for every µ̄ ∈ (∆Θ) \
D. Because H has a measurable graph, the graph of the extended correspondence is also
measurable, and so Corollary 18.27 from Aliprantis and Border (2006) delivers measurable
functions ϕ : ∆Θ → ∆Θ and γ : ∆Θ → (0, 1) with p{(ϕ, γ) ∈ H} = 1. Let ξ B

∫
(1 − γ) dp ∈

(0, 1).
For any λ ∈ (0, 1], define the measurable function

ϕλ : D → ∆Θ

µ 7→
1

(1 − λ) + λγ(µ)
[
(1 − λ)µ + λγ(µ)ϕ(µ)

]
,

and define the measures18

µλ B
1
λξ

{
µ0 −

∫
(1 − λ + λγ)ϕλ dp

}
∈ ∆Θ

18It is immediate from the definition of ξ that µλ ∈ ca(Θ) has µλ(Θ) = 1. To see the measure is positive,
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and19

pλ B
∫

(1 − λ + λγ) δϕλ(·) dp + λξδµλ ∈ ∆∆Θ.

The definition of µλ ensures pλ ∈ I(µ0) for λ ∈ (0, 1]. Therefore,20

ŵ(µ0) ≥ lim inf
λ→0

∫
ŵ dpλ (by Lemma 2)

≥ lim inf
λ→0

[∫
(1 − λ + λγ) ŵ ◦ ϕλ dp + λξmin uS (A × Θ)

]
= lim inf

λ→0

∫
(1 − λ + λγ) ŵ ◦ ϕλ dp

≥

∫
lim inf
λ→0

[
(1 − λ + λγ) ŵ ◦ ϕλ

]
dp (by Fatou’s lemma)

≥

∫
f dp (because p{ϕ ∈ G} = 1).

The lemma then follows if we show H has measurable graph.
Toward measurability of the graph gr H, let X B D × ∆Θ. First note that gr F = {(µ̄, µ) ∈

X : f (µ̄) − ŵ(µ) < 0} is measurable because f is measurable and ŵ is (by Lemma 2) lower
semicontinuous. Next, consider the graph of G. For any µ̄ ∈ D, that F is (by Lemma 2)
convex-valued and (0, 1] = co

{
1
n : n ∈ N

}
implies

G(µ̄) =
{
µ ∈ ∆Θ : 1

nµ + (1 − 1
n )µ̄ ∈ F(µ̄) ∀ sufficiently large n ∈ N

}
.

Moreover, for each n ∈ N, the map ψn : X → X given by ψn(µ̄, µ) B
(
µ̄, 1

nµ + (1 − 1
n )µ̄

)
is

continuous, hence measurable. Therefore,

gr G =
{
(µ̄, µ) ∈ X :

(
µ̄, 1

nµ + (1 − 1
n )µ̄

)
∈ gr F ∀ sufficiently large n ∈ N

}
=

∞⋃
N=1

∞⋂
n=N

ψ−1
n (gr F),

which is measurable. Finally, the graph

gr H =
[
(gr G) × (0, 1)

]
∩ {(µ̄, µ, ζ) ∈ X × (0, 1) : µ0 − ζµ ≥ 0}

hence in ∆Θ, observe that p ∈ I(µ0) and p{(ϕ, γ) ∈ H} = 1 implies

λξµλ = µ0 −

∫ [
(1 − λ)µ + λγ(µ)ϕ(µ)

]
dp(µ) = µ0 −

∫ [
(1 − λ)µ0 + λγϕ

]
dp = λ

∫
(µ0 − γϕ) dp ≥ 0.

19Recall δµ is the degenerate probability measure on {µ} for any µ. Therefore, for any measurable D̃ ⊆ ∆Θ,
we have pλ(D̃) =

∫ [
1 − λ + λγ(µ)

]
1ϕλ(µ)∈D̃ dp(µ) + λξ1µλ∈D̃.

20Note Fatou’s lemma applies because (1 − λ + λγ) w ◦ ϕλ is bounded and p is finite.
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is measurable too because (µ̄, µ, ζ) 7→ µ0 − ζµ is continuous and ca+(Θ) is closed in ca(Θ).21

The lemma follows. �

Lemma 5. Let µ̄, µ ∈ ∆Θ and ε > 0. If A∗R(µ) = {a} for some a ∈ A∗R(µ̄) with
∫

uS (a, ·) dµ̄ >
v(µ̄) − ε, then all sufficiently small λ ∈ (0, 1] have w (λµ + (1 − λ)µ̄) > v(µ̄) − ε.

Proof. Because a is a best response to µ̄ and a unique best response to µ, it is (by linearity
of expected utility) a unique best response to any proper convex combination µ′, yielding
w(µ′) =

∫
uS (a, ·) dµ′, which converges to v(µ) as µ′ → µ̄. �

Lemma 6. S has a unique equilibrium payoff if some persuasion-sufficient D ⊆ ∆Θ exists
such that every µ̄ ∈ D has

max
a∈A∗R(µ̄)

∫
uS (a, ·) dµ̄ = sup

a∈A∗R(µ̄)∩AU (µ0)

∫
uS (a, ·) dµ̄.

Proof. Fixing ε > 0 and µ̄ ∈ D, Lemma 4 means it suffices to find µ ∈ ∆Θ and γ > 0 such
that γµ ≤ µ0 and all sufficiently small λ ∈ (0, 1] have ŵ (λµ + (1 − λ)µ̄) > v(µ̄) − ε. Some
a ∈ A∗R(µ̄) has

∫
uS (a, ·) dµ̄ > v(µ̄) − ε. Then, by hypothesis, some µ ∈ ∆Θ and γ > 0 exist

such that γµ ≤ µ0 and A∗R(µ) = {a}. This µ is as desired by Lemma 5. �

Proof of Theorem 1. First, we establish that the strong PUBR property implies S has a unique
equilibrium payoff. Given ε > 0 and µ̄ ∈ D, Lemma 3 means it suffices to find µ ∈ ∆Θ and
γ > 0 such that γµ ≤ µ̄ and all sufficiently small λ ∈ (0, 1] have ŵ (λµ + (1 − λ)µ̄) > v(µ̄)− ε.
To do so, note some a ∈ A∗R(µ̄) has

∫
uS (a, ·) dµ̄ > v(µ̄) − ε. Then, by hypothesis, some

µ ∈ ∆Θ and γ > 0 exist such that γµ ≤ µ̄ and A∗R(µ) = {a}. This µ is as desired by Lemma 5.
Now, we show the PUBR property implies S has a unique equilibrium payoff if min{|A|, |Θ|} <

∞. For both cases, we appeal to Lemma 6. In light of that lemma, it suffices to note that
AU ⊆ AU(µ0) if either Θ or A is finite. If Θ is finite, the result follows because every belief
µ ∈ ∆[supp µ0] has γµ ≤ µ0 for γ B minθ∈supp µ

µ0(θ)
µ(θ) .22 If A is finite, the result follows because

the set of beliefs in ∆[supp µ0] to which a given action is a unique best response is relatively
open, and (Lemma 2, Lipnowski and Mathevet, 2018) the set of beliefs µ admitting γ > 0
with γµ ≤ µ0 is dense in ∆[supp µ0]. �

Lemma 7. Given finite A and Θ, define the setUR ⊆ R
A×Θ of R objectives uR such that every

µ ∈ ∆Θ and a ∈ A∗R(µ) have some µ′ ∈ ∆[supp µ] with A∗R(µ′) = {a}. Then UR is open and
dense with full Lebesgue measure.

21Suppose (ηβ)β is a net in ca+ (Θ) that weak* converges to some η ∈ ca(Θ). For each β, some λβ ∈ R+

and µβ ∈ ∆Θ have ηβ = λβµβ. We want to show η ≥ 0. Passing to a subnet, we may assume (because ∆Θ is
compact) µβ converges to some µ ∈ ∆Θ; and because the constant function 1 is continuous, ηβ → η implies
λβ → λ B

∫
1 dη. Therefore, λ ≥ 0 and so η = λµ ≥ 0.

22A more direct proof (as described in the main text) is available for the case of finite states. Because we
require Lemma 6 to prove the finite-action case and Theorem 2, we find it convenient to use it here too.
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Proof. Toward showing these properties, let us note an algebraic characterization of UR.
Define the finite index set I B {(a, Θ̂) : a ∈ A, ∅ , Θ̂ ⊆ Θ} and, for each i = (a, Θ̂) ∈ I,
define

ϕi : RA×Θ → R

uR 7→ max
µ∈∆Θ̂

min
a′∈A\{a}

∫ [
uR(a, ·) − uR(a′, ·)

]
dµ.

ThenUR = {uR ∈ R
A×Θ : ϕi(uR) is nonzero for every i ∈ I} =

⋂
i∈I ϕ

−1
i (R \ {0}) .

We can therefore show UR ⊆ R
A×Θ is open, dense, and of full Lebesgue measure by

establishing that ϕ−1
i (R \ {0}) enjoys these properties for every i = (a, Θ̂) ∈ I. First, note it

is open because (by Berge’s theorem) ϕi is continuous. To show it is of full measure (hence
also dense), define z̄ B [1ã=a]ã∈A, θ̃∈Θ ∈ R

A×Θ, and observe that ϕi(uR + λz̄) = ϕi(uR) + λ for
any uR ∈ R

A×Θ and any λ ∈ R. Now, fixing some θ̄ ∈ Θ, observe that we can decompose the
vector space of all R objectives as the direct sum RA×Θ = Y ⊕ Z, where

Y B {uR ∈ R
A×Θ : uR(a, θ̄) = 0} and Z B {λz̄ : λ ∈ R}.

As ϕi(y + λz̄) = ϕ(y) + λ for any y ∈ Y and λ ∈ R, and a singleton is Lebesgue-null in R � Z,
it follows from the law of iterated expectations that ϕ−1

i (0) is Lebesgue-null as well. The
proposition follows. �

Proof of Proposition 2. Lemma 7 names a set UR and shows it is open and dense in RA×Θ

with full Lebesgue measure. Meanwhile, by definition of UR, the PUBR property holds on
∆Θ whenever uR ∈ UR. The proposition then follows from Theorem 1. �

Lemma 8. Suppose A,Θ ⊆ R; the function uR exhibits strictly increasing differences; every
µ ∈ ∆Θ admits some a ∈ {min A∗R(µ), max A∗R(µ)} such that

∫
uS (a, ·) dµ = v(µ); and for each

θ̄ ∈ {min supp µ0, max supp µ0}, either µ0(θ̄) = 0 or R’s best response at δθ̄ is unique. Then,
S has a unique equilibrium payoff.

Proof. Let θL B min supp µ0 and θH B max supp µ0, and define the measurable set of beliefs

D B
(
∆[supp µ0]

)
\ {δθ : θ ∈ {θL, θH}, µ0(θ) = 0} .

Clearly, that p ∈ I(µ0) implies p(D) = 1, and so D is persuasion sufficient.
Fix any µ̄ ∈ D and ε > 0. Lemma 4 will deliver the present lemma if we can find some

µ ∈ ∆Θ and γ ∈ (0, 1) such that γµ ≤ µ0 and ŵ(λµ + (1 − λ)µ̄) > v(µ̄) − ε for all sufficiently
small λ ∈ (0, 1]. If µ̄ = δθ̄ for some θ̄ ∈ {θL, θH}, then (since µ̄ ∈ D) µ0(θ̄) > 0 and |A∗R(µ̄)| = 1,
so that (µ, γ) = (µ̄, µ0(θ̄)) is as desired. We therefore focus on the complementary case in
which µ̄ lies strictly between δθL and δθH in the sense of first-order stochastic dominance.

By hypothesis, some ā ∈ {min A∗R(µ̄), max A∗R(µ̄)} has
∫

uS (ā, ·) dµ = v(µ̄). Without
loss (because our hypotheses are invariant to reversing the order on both A and Θ), say
ā = max A∗R(µ). That µ̄ ∈ D with |A∗R(µ̄)| > 1 implies, given the theorem’s hypothesis on the
prior, that µ̄ , δθH .
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Now, for any θ∗ ∈ (θL, θH), let γθ∗ B µ0(θ∗, θH] ∈ (0, 1) and define the conditional
distribution µθ∗ B

1
γθ∗
µ0 [(·) ∩ (θ∗, θH]] ∈ ∆Θ. By construction, we know γθ∗µθ∗ ≤ µ0 for

every θ∗ ∈ (θL, θH). We will show that (µ, γ) = (µθ∗ , γθ∗) are as desired when θ∗ ∈ (θL, θH) is
large enough.

Let η > 0 and neighborhood B ⊆ ∆Θ of µ̄ be small enough that any a ∈ A with |a− ā| < η
and any µ̃ ∈ B have

∫
uS (a, ·) dµ̃ > v(µ̄) − ε. We now claim that, for all sufficiently

large θ∗ ∈ (θL, θH), every a ∈ A with a ≤ ā − η has
∫

uS (a, ·) dµθ∗ <
∫

uS (ā, ·) dµθ∗ . As-
sume otherwise, for a contradiction. Then (A being compact) some sequence (θ∗n, an)n from
(θL, θH) × A converging to (θH, a′), for a′ ∈ A ∩ (−∞, ā − η], has an ∈ A∗R(µθ∗n) for every n.
But

∫
[uS (an, ·) − uS (ā, ·)] dµθ∗n ≥ 0 converges to

∫
[uS (a′, ·) − uS (ā, ·)] dδθH , which is strictly

negative due to strictly increasing differences and ā ∈ A∗(µ̄)—a contradiction.
In what follows, fix θ∗ ∈ (θL, θH) such that every a ∈ A with a ≤ ā−η has

∫
uS (a, ·) dµθ∗ <∫

uS (ā, ·) dµθ∗; the previous paragraph established such θ∗ exists. Letting µ B µθ∗ , and letting
Aλ B A∗R(λµ + (1 − λ)µ̄) for each λ ∈ (0, 1], we will next observe Aλ ⊆ (ā − η, ā + η) for
small enough λ ∈ (0, 1]. First, consider any a ∈ A with a ≤ ā − η. By definition of µ we
have

∫
uS (a, ·) dµ <

∫
uS (ā, ·) dµ, and that ā ∈ A∗R(µ̄) tells us

∫
uS (a, ·) dµ ≤

∫
uS (ā, ·) dµ.

Therefore, a < Aλ. Having established Aλ ⊆ (ā − η,∞) for every λ ∈ (0, 1], the desired
containment for sufficiently small λ would follow if we knew that lim supλ→0 max Aλ ≤ ā.
But observe this inequality holds because max A∗R is upper semicontinuous and ā = max A0.

Having seen Aλ ⊆ (ā − η, ā + η) for sufficiently small λ ∈ (0, 1], and observing that
λµ + (1 − λ)µ̄ ∈ B for sufficiently small λ ∈ (0, 1], it follows that µ is as required. �

Proof of Theorem 2. Given Lemma 8, the theorem follows immediately if we establish that
every µ ∈ ∆Θ admits a ∈ {min A∗R(µ),max A∗R(µ)} such that

∫
uS (a, ·) dµ = v(µ). This

property follows directly from the quasiconvexity/quasiconcavity property of the ordered
model: The condition clearly holds if S’s expected payoff is quasiconvex in the action, and it
holds vacuously (because |A∗R(µ)| ≤ 2) if R’s expected payoff is strictly quasiconcave in the
action. �

A.3. Proofs for Section 4
To better understand the set of χ-PBE and the S payoffs they can generate, connecting this
solution concept to the analysis of Lipnowski, Ravid, and Shishkin (2022) is useful. That
paper defines a notion of a χ-equilibrium and characterizes the S payoffs such a solution
can generate.23 Roughly, a χ-equilibrium specifies an experiment ψ ∈ Ψ, together with con-
tinuation play and continuation beliefs that satisfy the incentive and Bayesian properties in
the partial-credibility game, but with no requirement that the initial experiment ψ be chosen
optimally. From the definitions in the present paper and in LRS1, the following is immediate.

Fact 1. The quadruple 〈ψ, σ, α, π〉 is a χ-PBE if and only if:

23The model in LRS1 assumes the message space to be uncountable. However, given that |M| ≥ 2|Θ|,
it follows readily from Carathéodory’s theorem and Lemma 1 of LRS1 that the χ-equilibrium payoff set is
unchanged.
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1. For every ψ̃ ∈ Ψ, the quadruple 〈ψ̃, σ(·, ψ̃), α(·, ψ̃), π(·, ψ̃)〉 is a χ-equilibrium.

2. We have ψ ∈ argmaxψ̃∈Ψsψ̃, where sψ̃ is the S payoff induced by 〈ψ̃, σ(·, ψ̃), α(·, ψ̃), π(·, ψ̃)〉.

In particular, every χ-PBE payoff is a χ-equilibrium payoff.

We will use the following notation, for an S payoff that LRS1 characterizes, throughout.24

Notation 1. Let v∗χ(µ0) denote the highest χ-equilibrium S payoff (given prior µ0).

Toward constructing adversarial χ-PBE that give S an undesirable payoff in response
to off-path experiment choices, we begin with a technical lemma showing any reporting
protocol comprises part of a χ-equilibrium in which R always chooses from a given restricted
set of best responses.

Lemma 9. If Ṽ ⊆ V is a Kakutani correspondence and ψ is any official reporting protocol,
then some χ-equilibrium (ψ, σ̃, α̃, π̃) exists such that uS (α̃) ∈ Ṽ(π̃).

Proof. Let Π B (∆Θ)M be the set of all R belief mappings and define correspondences

Ŝ : Π⇒ R

π̃ 7→
[
max
m∈M

min Ṽ(π̃(m)),max
m∈M

max Ṽ(π̃(m))
]
,

M̂ : Π⇒ M

π̃ 7→
{
m ∈ M : Ṽ(π̃(m)) ∩ Ŝ (π̃) , ∅

}
.

Observe that Ŝ is Kakutani, since Ṽ is Kakutani and a finite maximum or minimum of up-
per or lower semicontinuous functions inherits the same semicontinuity. Therefore, M̂ is
nonempty-valued with closed graph. Now let Σ B (∆M)Θ and consider the correspondence
mapping belief maps into S-IC influencing strategies (assuming R’s strategy delivers S val-
ues from Ṽ)

Σ̂ : Π⇒ Σ

π̃ 7→
{
σ̃ ∈ Σ : ∪θ∈Θ supp(σ̃(θ)) ⊆ M̂(π̃)

}
,

and the correspondence mapping influencing strategies into consistent belief maps

Π̂ : Σ⇒ Π,

σ̃ 7→
{
π̃ ∈ Π : π̃(θ|m)

∫
Θ

[
χ dψ(m|·) + (1 − χ)σ̃(m|·)

]
dµ0

=
[
χ(θ)ψ(m|θ) + (1 − χ(θ))σ̃(m|θ)

]
µ0(θ),∀θ ∈ Θ,m ∈ M

}
.

24The value’s characterization (Theorem 1 of LRS1) remains valid in the present setting in light of Corol-
lary 1 of LRS1.
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It then follows that Σ̂ and Π̂ are both Kakutani. Therefore, the Kakutani fixed point theorem
delivers some σ̃ ∈ Σ and π̃ ∈ Π such that σ̃ ∈ Σ̂(π̃) and π̃ ∈ Π̂(σ̃). Now, take any si ∈

Ŝ (π̃) and let D B π̃(M). Note that si ∧ Ṽ |D is nonempty-valued and so admits a selector
φ : D → R.25 Therefore, some α̂ : D → ∆A exists such that uS (α̂(m)) = φ(m). Next, define
α̃ B α̂ ◦ π̃ : M → ∆(A). It is then easy to verify that (ψ, σ̃, α̃, π̃) is a χ-equilibrium. �

The following lemma shows the payoff ŵ(µ0) dominates some χ-equilibrium payoff.

Lemma 10. Every official reporting protocol ψ admits some χ-equilibrium 〈ψ, σ̃, α̃, π̃〉 with
ex-ante S payoff weakly below ŵ(µ0).

Proof. Without loss, we can focus on the case that µ0 is of full support. Indeed, if we con-
struct a χ-equilibrium as desired (for official reporting protocol ψ|Θ0) in the restricted model
with state space Θ0 B supp µ0, then this equilibrium can be extended to a χ-equilibrium in
the true model, by fixing any θ0 ∈ Θ0 and extending σ to Θ via σ(θ) B σ(θ0) for θ ∈ Θ \Θ0.
Note the lemma follows directly from Lemma 9 if we can find a Kakutani subcorrespondence
Ṽ ⊆ V such that the concave envelope of its upper selection satisfies cav[max Ṽ](µ0) ≤ ŵ(µ0).
Let us show Ṽ B [w, z] has this property, where z is the upper semicontinuous envelope of
w, given by

z : ∆Θ→ R

µ 7→ lim sup
µ′→µ

w(µ).

First, Ṽ is a Kakutani subcorrespondence of V since z is upper semicontinuous and lies above
the lower semicontinuous function w (and hence lies below v). All that remains, then, is to
show that ŵ(µ0) ≥ cav[max Ṽ](µ0) = ẑ(µ0). To do so, let us establish the stronger claim that
ẑ|D = ŵ|D, where D ⊆ ∆Θ is the set of full-support beliefs.

Define

z̃ : ∆Θ→ R

µ 7→ lim sup
µ′→µ

ŵ(µ).

It follows from concavity of ŵ that z̃ is concave too. Hence, because z̃ ≥ z and z̃ is upper
semicontinuous by construction, it follows that z̃ ≥ ẑ.26 Moreover, Theorem 10.4 from
Rockafellar (1970) implies the concave function ŵ|D is continuous. Hence, z̃|D = ŵ|D by the
definition of z̃. That z̃ ≥ ẑ ≥ ŵ then implies ẑ|D = ŵ|D. �

Here, we provide a sufficient condition for a payoff to be compatible with χ-PBE for an
arbitrary credibility level.

Lemma 11. If s ∈
[
ŵ(µ0) ∧ v∗χ(µ0), v∗χ(µ0)

]
, then s is a χ-PBE payoff for S.

25That is, some φ : D→ R has φ ≤ si and φ(µ) ∈ Ṽ(µ) for every µ ∈ D.
26In fact, one can show z̃ = ẑ, but this fact is immaterial to the present argument.
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Proof. First, we argue a χ-equilibrium exists with ex-ante S payoff s. To that end, observe
that Lemma 1 from LRS1 implies (δµ0 ,w(µ0),w(µ0)) is a χ-equilibrium outcome (as wit-
nessed by k = χ and g = b = δµ0). But then, as Theorem 1 from LRS1 says v∗χ(µ0) is
the highest χ-equilibrium S payoff, it follows from Lemma 7 of LRS1 that every payoff
in [w(µ0), v∗χ(µ0)] is a χ-equilibrium S payoff. Thus, s is a χ-equilibrium S payoff because
ŵ(µ0) ∧ v∗χ(µ0) ≥ w(µ0). So let (ψ, σ̃, α̃, π̃) be some χ-equilibrium generating S payoff s.

Finally, to build a χ-PBE, construct σ, α, and π as follows. First, let σ(·, ψ) B σ̃,
α(·, ψ) B α̃, and π(·, ψ) B π̃. Second, given any ψ̃ ∈ Ψ \ {ψ}, let 〈ψ̃, σ(·, ψ̃), α(·, ψ̃), π(·, ψ̃)〉
be some χ-equilibrium—which Lemma 10 implies exists—with ex-ante S value of at most
ŵ(µ0) ∧ v∗χ(µ0); this χ-equilibrium necessarily yields S payoff no greater than v∗χ(µ0) by def-
inition of the latter. Since s ≥ ŵ(µ0) ∧ v∗χ(µ0), the quadruple 〈ψ, σ, α, π〉 is a χ-PBE as
desired. �

Next, we characterize the highest χ-PBE payoff S can attain; it coincides with her highest
χ-equilibrium payoff.

Lemma 12. The highest χ-PBE payoff for S is v∗χ(µ0), her highest χ-equilibrium payoff. This
payoff is weakly increasing in χ.

Proof. By Fact 1, no χ-PBE payoff is strictly higher than v∗χ(µ0). Meanwhile, Lemma 11
implies v∗χ(µ0) is a χ-PBE payoff. The last statement follows from LRS1’s Corollary 3. �

Now, we characterize the set of all 1-PBE payoffs S can attain; it coincides with the
1-equilibrium payoffs.

Lemma 13. The set of all 1-PBE payoffs for S is [ŵ(µ0), v̂(µ0)].

Proof. Theorem 1 from LRS1 tells us v̂∗1 = v̂, and so Lemma 11 says all payoffs in [ŵ(µ0), v̂(µ0)]
are 1-PBE payoffs for S. Conversely, every 1-PBE generates a 1-equilibrium by Fact 1, and
so generates an equilibrium (in the sense of Definition 1) by throwing away the influencing
S behavior, the set of 1-PBE payoffs is a subset of the set of equilibrium payoffs. Hence, the
other containment follows from Proposition 0. �

We can now prove the results on χ-PBE reported in the main text.

Proof of Proposition 3. Let S χ denote the set of χ-PBE payoffs for S, and let S̄ B [ŵ(µ0), v̂(µ0)].
First, Lemma 12 says v∗(µ0) = max S χ, and v∗(µ0) ≤ v̂(µ0) = max S̄ by Theorem 1 from
LRS1. Meanwhile, Lemma 11 implies S̄ ∩ (−∞,max S χ] ⊆ S χ. Hence S χ is weakly below
S̄ in the strong set order. Finally, that S 1 = S̄ is exactly Lemma 13. �

Proof of Proposition 4. Fix any full-support prior µ0 ∈ ∆Θ, and define s
χ
B w∗χ(µ0) for each

χ ∈ [0, 1]; in particular, s1 = ŵ(µ0) by Lemma 13. To prove the equivalence, it suffices to
show that limχ↗1 s

χ
= s1. Further, Lemma 11 tells us s

χ
≤ s1 for every χ ∈ [0, 1], so we need

only show lim infχ↗1 s
χ
≥ s1, which we do below.

Take an arbitrary ε > 0. By definition of s1, some p ∈ I(µ0) exists such that
∫

w dp >
s1 − ε. Moreover, by Lemma 1, we may further assume | supp(p)| ≤ |Θ| ≤ |M|. For each
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µ ∈ supp(p), let N(µ) ⊆ ∆Θ be some open neighborhood of µ on which w > w(µ) − ε, which
exists because w is lower semicontinuous. Because supp(p) is finite, which in particular
implies p(µ) > 0 for every µ ∈ supp(p), some χ ∈ (0, 1) is such that

1
χp(µ)+(1−χ)

[
χp(µ)µ + (1 − χ)∆Θ

]
⊆ N(µ)

for each µ ∈ supp(p), and so (since ∆Θ is convex) the containment holds as well when we
replace χ with any χ ∈ (χ, 1).

Consider now, any χ ∈ (χ, 1), and fix some χ-PBE 〈ψ, σ, α, π〉 generating S payoff
s ∈ R. Let ψ̃p ∈ Ψ be as defined in Proposition 0’s proof, so that pψ̃p

= p. Modi-
fying ψ̃p if necessary, we may assume without loss that any two distinct messages from
Mp B {m ∈ M :

∫
Θ
ψ̃p(m|·) dµ0 > 0} would generate distinct beliefs. Hence, every belief

µ ∈ supp(p) admits a unique mµ ∈ Mp such that every θ ∈ Θ has
ψ̃p(m|θ)µ0(θ)∫
Θ
ψ̃p(m|·) dµ0

= µ(θ). If

S chooses official reporting protocol ψ̃p and sends message mµ for some µ ∈ supp(p), the
Bayesian property implies π(mµ, ψ̃p) ∈ 1

χp(µ)+(1−χ)

[
χp(µ)µ + (1 − χ)∆Θ

]
⊆ N(µ), so that R’s

best response property implies S has continuation value exceeding w(µ) − ε. But because S
chooses ψ ∈ Ψ optimally, and has the option to choose ψ̃p, it must be that

s ≥
∫

Θ

(∫
M

[∫
A

uS (a) dα(a|m, ψ̃p)
]

d
[
χψ̃p(m|θ) + (1 − χ)σ(m|θ, ψ̃p)

])
dµ0(θ)

≥ χ

∫
Θ

∫
M

[∫
A

uS (a) dα(a|m, ψ̃p)
]

dψ̃p(m|θ) dµ0(θ) + (1 − χ) min w(∆Θ)

≥ χ

∫
∆Θ

(w − ε) dp + (1 − χ) min w(∆Θ)

≥ χ(s1 − ε) + (1 − χ) min w(∆Θ)

Because s was the payoff from an arbitrary χ-PBE, we learn that every χ ∈ (χ, 1) has s
χ
≥

χ(s1 − ε) + (1 − χ) min w(∆Θ), which converges to s1 − ε as χ converges to 1. Hence,
lim infχ↗1 s

χ
≥ s1 − ε. But ε was itself arbitrary, so that lim infχ↗1 s

χ
≥ s1, as desired. �
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