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Abstract

With standard models of updating under ambiguity, new information may increase the amount of relevant 
ambiguity: the set of beliefs may ‘dilate.’ We experimentally test one sharp case: agents bet on a risky 
urn and get information that is truthful or not based on the draw from an Ellsberg urn. With common 
models, the set of beliefs dilates, and the value of bets decreases for ambiguity-averse agents and increases 
for ambiguity-seeking ones. Instead, we find that the value of bets does not change for ambiguity-averse 
individuals, while it increases substantially for ambiguity-seeking ones. We also test bets on ambiguous 
urns, in which case we find sizable reactions to ambiguous information.
Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://
creativecommons .org /licenses /by -nc -nd /4 .0/).

JEL classification: C91; D81; D90

Keywords: Updating; Ambiguous information; Ambiguity aversion; Ellsberg paradox; Maxmin expected utility

✩ The order of authors was randomized; the authors contributed equally. We thank the editor Pierpaolo Battigalli, an 
associate editor, and two anonymous referees for the very valuable comments and advice, as well as Marina Agranov, 
Simone Cerreia-Vioglio, Mark Dean, David Dillenberger, Adam Dominiak, Yoram Halevy, Faruk Gul, Yucheng Liang, 
Fabio Maccheroni, Massimo Marinacci, Stephen Morris, Wolfgang Pesendorfer, Leeat Yariv, Sevgi Yuksel, and various 
audiences for useful discussions and suggestions. We are grateful to Rui Tang for outstanding research assistance. 
Ortoleva gratefully acknowledges the financial support of NSF Grant SES-1763326.

* Corresponding author.
E-mail addresses: dshishkin@ucsd.edu (D. Shishkin), pietro.ortoleva@princeton.edu (P. Ortoleva).
https://doi.org/10.1016/j.jet.2023.105610
0022-0531/Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://
creativecommons .org /licenses /by -nc -nd /4 .0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jet.2023.105610&domain=pdf
http://www.sciencedirect.com
https://doi.org/10.1016/j.jet.2023.105610
http://www.elsevier.com/locate/jet
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:dshishkin@ucsd.edu
mailto:pietro.ortoleva@princeton.edu
https://doi.org/10.1016/j.jet.2023.105610
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


D. Shishkin and P. Ortoleva Journal of Economic Theory 208 (2023) 105610
1. Introduction

Extensive theoretical and experimental literature has studied modeling and implications of 
ambiguity—when payoffs depend on states of the world for which there is no objective proba-
bility distribution. One important aspect is how ambiguity interacts with updating. However, the 
theoretical literature in this area has not reached a consensus, and experimental analysis is much 
more limited.

We experimentally study one aspect of ambiguity and updating: how agents react to infor-
mation of ambiguous reliability. Agents make bets and receive messages that can be truthful or 
misleading depending on the draw from an Ellsberg urn. We study this scenario for three reasons.

First, this experiment tests a key implication of standard models of updating under ambiguity, 
namely that information may increase relevant ambiguity and make agents worse off —the so-
called ‘dilation’ of sets of beliefs. For example, with widespread updating rules for MaxMin 
Expected Utility, the set of relevant beliefs may become larger (dilate) after information. This 
makes ambiguity-averse agents strictly worse off after information, and they should be willing 
to pay to avoid it. Appealing or not, this is an implication of widespread models that, to our 
knowledge, has not been tested. Our experiment with information of ambiguous reliability allows 
us to test a very sharp case, in which dilation should occur after any message—‘all news is bad 
news’ (Gul and Pesendorfer, 2021).

Second, the dilation feature of updating that we test is central to many applications to game 
theory and mechanism design. In fact, the very type of ambiguous information that we study in 
our experiment is used in applications. Below, we discuss papers on ambiguity in mechanism 
design and Bayesian persuasion in which, in the motivating examples of both, the ambiguity 
pertains to whether messages are truthful or not, exactly as in our experiment.

Third, our experiment contributes to the growing interest in ambiguous information, focusing 
on the case of ambiguity in the reliability of messages. While ambiguity in informativeness may 
be commonplace in real life, it is studied only by few recent papers as discussed below.

Experiment Subjects first evaluate bets on the color of a ball drawn from an urn. In some cases, 
they receive a message about the winning color; this message is truthful or misleading depending 
on the draw from a (separate) 2-color Ellsberg bag of chips. After subjects acknowledge the 
message, we measure how the value of bets changes. We also measure the (positive or negative) 
value of this information. In some questions, the payoff-relevant draw is made from a risky, 50/50 
urn; thus, all ambiguity is in the message. In other questions, draws are made from an ambiguous 
urn. We also measure subjects’ ambiguity-aversion.

Relation to theories Standard models of updating under ambiguity make clear predictions. 
Consider the MaxMin Expected Utility model (MMEU) of Gilboa and Schmeidler (1989). Two 
updating rules are widespread: Full-Bayesian (FB), wherein the posterior set includes updates of 
all beliefs; and Maximum-Likelihood (ML), wherein the updated set includes only beliefs that 
satisfy a maximum-likelihood criterion. When the payoff-relevant state is risky, the relevant set 
of beliefs without information is a singleton. But, after ambiguous information, as in our experi-
ment, if subjects are not ambiguity neutral with FB or ML, the relevant set of beliefs dilates and 
is no longer a singleton. Because of the ambiguity in information, bets on the risky urn become 
ambiguous. Ambiguity-averse agents should then decrease the value of bets after information 
and even pay to avoid it. (The opposite is true for ambiguity-seeking agents.) Note that these 
predictions hold for any message, meaning that all news is bad news.
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One may well consider some of these predictions unappealing—especially that information 
must make ambiguity-averse individuals strictly worse off. In particular, this view is in line with 
the critique suggested in the statistics literature (Good, 1967, 1974; Seidenfeld, 1981; Walley, 
1991). However, these implications are central predictions of widely used theories and play an 
important role in application.

We also show that these predictions hold beyond MMEU: they also apply to Bayesian updat-
ing of (symmetric) Smooth Ambiguity model (Klibanoff et al., 2005, 2009). The fact that this 
model vastly differs from MMEU points to the pervasiveness of this implication.

Results When the payoff-relevant state is risky, ambiguity-averse or neutral subjects typically 
do not change the value of bets after information. The median change is zero, and the majority 
has exactly zero change. For ambiguity-averse subjects, there is also no robust relation between 
ambiguity-aversion and the size of change (or the probability it is non-zero). They also typi-
cally give zero value to information. All these findings contrast to the theoretical predictions of 
negative reaction to information and negative value of information.

On the other hand, ambiguity-seeking subjects typically increase their valuation after infor-
mation, and this change in value is strongly related to their ambiguity affinity, in line with the 
theoretical prediction. Yet, many still value the information close to zero.

When the payoff-relevant state is ambiguous, ambiguity-averse subjects slightly increase val-
uations, while ambiguity-seeking subjects decrease them. Theories make no prediction for this 
case.

Implications We found that ambiguity-averse agents do not react negatively to our type of 
ambiguous information, in contrast to the dilation property of widespread models of updating 
under ambiguity. We thus conclude the paper with a discussion of alternative rules that are instead 
compatible with our findings.

First, subjects may be using FB or ML, but complement it by strategically choosing whether to 
process the information. While under Subjective Expected Utility information is always weakly 
valuable—there is no benefit in ignoring it—this is no longer the case under ambiguity. Thus, 
subjects may decide to ignore information when it is harmful. To our knowledge, the only existing 
model with this feature is Dynamically Consistent Updating (Hanany and Klibanoff, 2007, 2009), 
wherein agents form an ex-ante optimal plan contingent on information and use an updating rule 
such that they want to implement it. This rule, however, violates consequentialism (unrealized 
parts of the decision problem may influence beliefs).

Alternatively, subjects may follow Proxy Updating (Gul and Pesendorfer, 2021) or Contrac-
tion Updating (Tang, 2022), which satisfy consequentialism but restrict dilation. Proxy Updating 
is designed precisely to rule out instances of ‘all news is bad news.’ While the exact model can-
not be applied to our setup—it is defined for totally monotone capacities, which is not the case 
here—our results are aligned with the underlying idea of this approach. Contraction Updating is 
defined for a general MMEU, and it is compatible with our main finding that ambiguity-averse 
agents do not change their valuation of bets after information.

Literature A theoretical literature discusses updating rules under ambiguity (Gilboa and Mari-
nacci, 2013, Sec. 5), while an experimental one tested dynamic consistency and consequentialism 
(Cohen et al., 2000; Dominiak et al., 2012; Bleichrodt et al., 2021; Esponda and Vespa, 2021), 
how sampling from ambiguous sources affects ambiguity preferences (Ert and Trautmann, 2014), 
3
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learning from sequences of observations (Moreno and Rosokha, 2016), in groups (De Filippis et 
al., 2022), or from stock prices (Baillon et al., 2017).

Several recent papers also study ambiguous information (Epstein and Halevy, 2022; Liang, 
2022; Kellner et al., 2022; Kops and Pasichnichenko, 2022).1 A common difference with our 
work is that they do not study the dilation property, our primary focus. Building on Epstein and 
Schneider (2007, 2008), Epstein and Halevy (2022) define and characterize attitudes to ‘signal 
ambiguity,’ the ambiguity on the informativeness of a signal, and tests it experimentally.2 Focus-
ing on a setup with ambiguity, they find that signal ambiguity significantly increases deviations 
from Bayesian updating. While related to our work in its interest in ambiguous signals, in Epstein 
and Halevy (2022) the payoff-relevant state is ambiguous and signals are always informative, but 
the agent does not know how much. On the other hand, in our experiment, the payoff-relevant 
state can be risky and the ambiguity is on whether the signal is informative or misleading. The 
papers are thus complementary: our design is less extensive on ambiguous information but al-
lows us to test the dilation property and a form of ambiguous information used in the applied 
literature.

A contemporaneous paper by Liang (2022) studies updating with risky state under simple 
and uncertain (ambiguous and compound) signals, as well as ambiguous and compound state 
under simple signals. It compares updating under different types of signals that correspond to the 
same average simple signal and finds that subjects under-react to uncertain information, which 
is more pronounced for good news rather than bad news. Also contemporaneous, Kellner et al. 
(2022) study messages with ambiguous reliability but asymmetric and with three messages, one 
of which is informative. They find a relation between reactions and ambiguity attitude and a 
similar reaction to ambiguous and compound-risk signals. Their design does not allow for tests 
of dilation. Kops and Pasichnichenko (2022) tests negative value of ambiguous information and 
finds that many subjects are information averse in the sense that their value of information in a 
binary choice task is at most −0.5 euros. Similar to our results, the fraction of information-averse 
subjects is significant across ambiguity attitudes, and no strong relation exists between negative 
value of information and ambiguity attitude (more than half of information-averse subjects are 
not ambiguity-averse). However, they report a much larger fraction of information-averse sub-
jects, a dissimilarity that may be due to experimental design differences.

Lastly, as noted above, the ambiguous information we study is used in applications of models 
of ambiguity to strategic environments. Bose and Renou (2014) study mechanism design wherein 
the allocation stage is preceded by an ambiguous mediated communication stage. Beauchêne et 
al. (2019) study Bayesian persuasion with an ambiguity-averse receiver and a sender who can 
commit to ambiguous signals. Both papers assume FB, and some of their results are linked to its 
dilation property. Pahlke (2022) and Cheng (2021) study ambiguous persuasion under alternative 
updating rules that account for dynamic consistency and dilation.

1 Moreover, Vinogradov and Makhlouf (2020) augment the Ellsberg experiment with vague statements about an am-
biguous payoff-relevant state, which may be perceived as ambiguous signals.

2 We learned about Epstein and Halevy (2022) before finalizing our design. We thank Yoram Halevy for useful discus-
sions.
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2. Theories of updating and ambiguous information

Consider a set of prizes X = R and a state space S = � × M , where � = {R, B} are the 
payoff-relevant states (colors of the ball), and M = {r, b} the messages.3

Assume preferences are represented by MMEU: given strictly increasing, continuous utility 
u : X → R and set of beliefs � ⊆ �(S), agents evaluate act f : S → X by minπ∈� Eπ [u ◦ f ] if 
ambiguity-averse; if ambiguity-seeking, max replaces min.

Given �, let �� denote the set of marginals over � and identify any π̂ ∈ �� with 
π̂(R) ∈ [0,1]. In line with our experiment, assume that all beliefs are symmetric in the sense 
that the likelihood that a message is truthful or not is independent of the payoff-relevant state, 
i.e., π(r|R) = π(b|B). Moreover, assume that � contains the uninformative belief π̄ (i.e., 
π̄(r|R) = π̄(b|R) = 0.5) and, if |�| �= 1, it does so in its relative interior.4 We call coherent
any closed set of beliefs that satisfies these restrictions.

Updating rules For any event D ⊆ S, let �D denote the set of beliefs after information D. The 
following two updating rules are the most common.

Full Bayesian (FB) updating (Wasserman and Kadane, 1990; Jaffray, 1992; Pires, 2002; Ghi-
rardato et al., 2008), the most common in applications, is defined by

FB�D := {π(·|D) : π ∈ �}.
Maximum Likelihood (ML) updating (Dempster, 1967; Shafer, 1976; Gilboa and Schmeidler, 

1993) is defined by

ML�D := {π(·|D) : π ∈ argmax
π ′∈�

π ′(D)}.

Under FB, individuals update all beliefs following Bayes’ rule. Under ML, they retain (and 
update) only the beliefs with the highest likelihood of the realized event.

Variables of interest Suppose an individual is ambiguity-averse and considers a bet that pays a 
baseline of x and adds y if a color chosen by the individual realizes. Its certainty equivalent is

cm(x, y) := u−1

(
max

ω∈{R,B} min
π∈��

m

π(ω)u(x + y) + (1 − π(ω))u(x)

)
,

where m ∈ {∅, r, b} denotes either the message received or no information (letting �∅ := �).
Our first variable of interest is the Information Premium: the difference between certainty 

equivalents of such bets before and after a message, defined as

3 The choice of the state space may have some implications in our results below. We follow standard practice and adopt 
the smallest state space in which payoff-relevant acts are defined (thus, we need the color of the ball extracted for the 
urn) such that the information can be encoded as a subset of the state space. Smaller state spaces are not possible; we are 
not aware of how considering larger state spaces could change our conclusions.

4 Asymmetries in the set of beliefs about the color of the ball extracted would increase the certainty equivalent of 
all bets (since subjects can choose the color to bet on). If the set of beliefs about information does not include the 
uninformative belief, the value of the information would necessarily increase: if all beliefs are such that the information 
is more likely to be truthful, the agent should follow it. However, if all are such that it is more likely to be untruthful, the 
agent may simply follow the opposite. In either case, the information becomes strictly valuable, increasing the value of 
all bets after information.
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Pm := cm(x, y) − c∅(x, y).

Our second variable of interest is the Value of Information: the amount V that makes the 
individual indifferent between no information and receiving a message while modifying payoffs 
by V . It is defined as the solution of the following equation

u(c∅(x, y)) = min
π∈�

Eπ [u(cm(x − V,y))] .

For ambiguity-seeking individuals, all variables are defined analogously, replacing min with 
max.

Risky payoff-state Suppose that the payoff-relevant state is risky. Then, we can derive the fol-
lowing result (all proofs appear in Appendix B).

Proposition 1. Consider an MMEU agent with a coherent set of beliefs � such that the payoff-
state is risky (|��| = 1) and symmetric (π(R) = 0.5, ∀π ∈ �).5 Then with FB and ML for any 
m ∈ M:

1. if ambiguity-averse and |�| > 1: Pm < 0, V < 0;
2. if ambiguity-seeking and |�| > 1: Pm > 0, V > 0;
3. if ambiguity-neutral (i.e., |�| = 1): Pm = V = 0.

The proposition shows that ambiguity-averse individuals must have negative Information Pre-
mia Pm for any message m, as well as a negative Value of Information V . Both are positive if 
ambiguity-seeking.

For intuition, suppose � = co({π1, π2, π3}) with π1(r|R) = 0.8 (messages point in the right 
direction), π2(r|R) = 0.5 (messages uninformative), and π3(r|R) = 0.2 (messages misleading). 
Before information, the set of marginals over � was a singleton—we have a risky state. But, 
after information, this set becomes full-dimensional: FB��

r = FB��
b = [0.2, 0.8] ⊃ {0.5} = ��. 

The multiplicity of beliefs about the truthfulness of the message generates multiple beliefs about 
payoff-relevant states. The set of posteriors not only includes the original belief, but also does 
so in its interior. Importantly, this holds for any message. Seidenfeld and Wasserman (1993) call 
this property of FB dilation. Proposition 1 shows that dilation occurs whenever |�| > 1.

With FB, because the set of beliefs dilates, ambiguity-averse individuals have strictly lower 
certainty equivalents. Moreover, because this holds for any message, the value of information is 
negative. The opposite holds for ambiguity-seeking individuals.

With ML, individuals focus only on beliefs that maximize the likelihood of the message. When 
π(R) = 0.5 for all π ∈ �, however, the likelihood of both messages is 0.5. Thus, all beliefs in �
are considered, and ML coincides with FB.

Ambiguous payoff-state Consider now ambiguous payoff-relevant states.

Proposition 2. Consider an MMEU individual with a coherent set of beliefs �. Then with FB 
and ML:

5 Symmetry of the payoff-relevant marginal is assumed only for ease of exposition. Without it, predictions with FB are 
the same; with ML, it remains true that both P and V are not zero unless there is ambiguity-neutrality.
6
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1. If |�| > 1, then both Pm and V can be zero, negative, or positive under both ambiguity-
aversion and seeking;

2. If |�| = 1, then Pm = V = 0, ∀m ∈ M .

When the payoff-relevant state is ambiguous, there are no predictions. Results depend on the 
set of beliefs across � and informativeness. Appendix B.1 contains examples showing dilation 
and contraction.

Beyond MMEU? Similar results hold beyond MMEU. Consider another popular model, the 
Smooth Model (Klibanoff et al., 2005). Preferences are represented by

U(f ) = Eμ[φ(Eπ [u ◦ f ])],
where the continuous, strictly increasing φ : R → R captures ambiguity attitude and μ ∈
�(�(S)) denotes the belief over beliefs. Following the literature, assume that an individual up-
dates μ following Bayes’ rule.6 Define Pm and V analogously using this model.

Proposition 3. Consider an individual whose preferences follow the Smooth Model with μ sym-
metric7 and such that supp(μ) is coherent. If the payoff-state is risky (|supp(μ)�| = 1), then for 
any m ∈ M:

1. if ambiguity-averse (strictly concave φ): Pm < 0, V < 0;
2. if ambiguity-seeking (strictly convex φ): Pm > 0, V > 0;
3. if ambiguity-neutral (affine φ): Pm = V = 0.

3. Experiment

3.1. Design

The experiment includes two parts, for a total of 6 questions. In each, subjects were asked to 
compare fixed amounts of money with a bet on their chosen color drawn from an urn. With two 
exceptions mentioned below, all bets paid $20 if the ball was of the chosen color, zero otherwise. 
Subjects were asked to compare each bet with a list of amounts of money ranging from $0 to 
$20, in a Multiple Price List (MPL). To simplify the task, subjects had to click only once in each 
list, indicating the point at which to switch from the bet to the amount of money.8

Different questions involved urns of two types. Risky urns had a known composition: 100 
balls, 50 of each color. Ambiguous urns had 100 balls of two colors with unknown compositions.

Questions were of three kinds. For each, subjects answered one question wherein the payoff-
relevant urn was risky, and one in which it was ambiguous.

6 Identical results also hold if individuals simply update the beliefs in the support (and not the belief over beliefs).
7 We call belief μ symmetric if for any Q ⊂ �(S), μ(Q) = μ(0.5 − Q), where 0.5 − Q := {π ′ ∈ �(S) : ∃π ∈ Q, ∀s ∈

S, π ′(s) = 0.5 − π(s)}.
8 By monotonicity, subjects should prefer bets against low amounts and ‘switch’ as the amount grows. The software 

(oTree; Chen et al., 2016) asked to indicate the point at which to switch. Subjects were also allowed to indicate no switch 
(always bet or always money). This procedure simplified choice but forced monotonicity. Subjects received extensive 
instruction and training.
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1. Basic Questions. Q1 and Q4 asked subjects to pick a color to bet on and then the certainty 
equivalent of a $20 bet using the MPL procedure. In Q1, the urn was risky. In Q4, it was 
ambiguous. Comparing the answers, we obtained a measure of ambiguity aversion.

2. Information Questions. Q2 and Q5 measured the certainty equivalent of a bet, but after 
information. At the beginning of the question, the computer drew a ball from the payoff-
relevant urn—determining the color that pays the bet—and a chip from a bag with 100 
chips of 2 colors and unknown composition. The computer then displayed a message 
for the subject indicating the color of the ball drawn from the urn. Whether this mes-
sage was truthful or misleading, however, depended on the chip drawn. If the chip was 
of one color, the computer told the truth; otherwise, it reported the opposite. In these 
questions, subjects were first shown the urn, then shown how the message was deter-
mined, and finally given the message. They then had to acknowledge it by clicking on 
the corresponding color. With the message remaining on screen, they had to pick a color 
to bet on and evaluate the bet using an MPL. In Q2, the payoff-relevant urn was risky; 
in Q5, it was ambiguous.

3. Information-Value Questions. Q3 and Q6 were similar to the questions above, but also mea-
sured the value of information. In these questions, subjects first faced an MPL in which 
they chose between no information and information, in addition an increase or decrease 
of their potential winning for the question (from a base of $20), ranging from −$5 to 
$5. After their respective choice, the computer randomly picked a line from this MPL 
and implemented their selection. If in that line, the subject chose no information, they 
proceeded with the evaluation of the bet without it. If they chose the information and a 
change in payoffs, they received both before evaluating the bet. In Q3, the underlying 
urn was risky; in Q6, it was ambiguous.

All questions used different urns and different colors, reducing the possibility of hedging 
across questions. This was clearly explained. Similarly, the bags that determined the information 
were all different and involved different colors. For symmetry, all colors for urns and bags were 
randomly selected.9

Order and incentives The 6 questions were grouped into two parts. Part I included the 3 ques-
tions involving bets on risky urns, in the following order: Q1, the evaluation of a bet on a risky 
urn; Q2, the evaluation of a bet on a risky urn after information; Q3, the evaluation of a bet on a 
risky urn after deciding whether or not to receive the information. Part II was identical, but with 
ambiguous urns. Questions are summarized in Table 1. There were two possible orders: in Order 
A, Part I then Part II; in Order B, the opposite.

Subjects received a participation fee of $10 and a completion fee of $15. One of the 6 ques-
tions was randomly selected for payment, and one of the lines of the MPL with the comparison 
between bets and amounts of money were randomly selected. Subjects received their choice for 
that line.10

9 Colors were selected randomly for each subject and each question from the same set, except that, for each subject, 
we avoided repetitions and pairings of similar colors.
10 Paying one randomly selected question is incentive compatible under Expected Utility but not beyond; no general 
incentive compatible mechanism exists (Karni and Safra, 1987; Bade, 2015; Azrieli et al., 2018). Some studies indicate 
that this may not be a concern (Beattie and Loomes, 1997; Cubitt et al., 1998; Hey and Lee, 2005; Kurata et al., 2009), 
while others suggest caution (Freeman et al., 2019).
8
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Table 1
Questions.

Payoff Urn Info

Q1 Risky No
Part I Q2 Risky Yes

Q3 Risky Evaluate

Q4 Ambiguous No
Part II Q5 Ambiguous Yes

Q6 Ambiguous Evaluate

3.2. Predictions and construction of variables

We now map the theoretical predictions from Section 2 to our experiment. From the MPLs 
comparing bets and amounts of money, we approximate the certainty equivalent of each bet. 
From the MPLs comparing information vs. no information (in Q3 and Q6), we approximate the 
value of information.

Because, in our experiment, choices involve different urns, we have to make two assumptions. 
First, that � before information is the same in questions of the same type, which is justified by the 
use of identical urns with randomly drawn colors. Second, we assume that subjects’ ambiguity 
attitude is the same across questions and with respect to information- and payoff-relevant states, 
as we have done implicitly in Section 2. In particular, we assume that, if �� is not a singleton 
when the payoff-state is ambiguous, then the set of beliefs about the truthfulness of messages is 
also not a singleton.11

We identify ambiguity attitudes by comparing the answer to Q1 (risky urn, no info) and Q4 
(ambiguous urn, no info): a higher/equal/lower certainty equivalent in Q1 than in Q4 indicates 
ambiguity-aversion/neutrality/seeking. The Ambiguity Premium is the difference between the 
value in Q1 and the value in Q4.

The Information Premium P is defined as the value in Q2 (Q5) minus the value in Q1 (Q4) 
for risky (ambiguous) payoff-states. The Value of Information V is elicited directly in the first 
part of Q3 (Q6) for risky (ambiguous) payoff-states.12

Applying the results from Section 2, the predictions for risky payoff-states are that both the 
Information Premium and the Value of Information should be negative/zero/positive for individ-
uals that are ambiguity-averse/neutral/seeking. For ambiguous payoff-states, the only prediction 
is that both measures should be zero for ambiguity-neutral.

Constructing variables Because MPLs have finite grids, our value elicitation is approximate. 
Following standard practice, we define the value as the mid-point between the grid points where 

11 This assumption is further justified by the fact that the description of the urn for the ambiguity in the information 
structure is identical to the description of the ambiguity in the payoff-relevant state, except for bag/jar terminology 
and randomized colors. For the former, from Q2: “. . . 100 chips, either Lime or Brown. The composition of the bag is 
unknown: there may be no Lime chips or no Brown chips, or any other composition.” For the latter, from Q4 “. . . 100 
Olive and Rose balls. The composition of the jar is unknown: there may be no Olive chips or no Rose chips, or any other 
composition.”
12 Note that the second part of Q3 (Q6) was equivalent to Q1 (Q4) or to Q2 (Q5), depending on whether a subject 
received information. In such cases, the majority chose consistently.
9
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the switch occurred.13 However, the true certainty equivalent may be anywhere in that range, and 
the approximation may matter in computing if variables are equal, smaller, or bigger than zero. 
We take the following conservative approach. Recall that the Information Premium is the differ-
ence between two certainty equivalents, each obtained via an MPL. When computing whether it 
is above, at, or below zero, we report it in two ways. First, using the procedure above, we denote 
results by >0, =0, <0. Second, we report the percentage of answers that are compatible with 
zero value, and denote them by ≈0.14

For the Value of Information, the grid is $0.1 around 0, and 0 is an option on the grid. By our 
mid-point construction, no subject can have a value of 0: even if they give 0 value to information, 
they must have either 0.05 and −0.05. In calculations, we use these numbers; in reporting >0, 
=0, or <0, we put 0.05 and −0.05 in the =0 category. Thus, zero values may be overestimated.

Finally, we take a (standard) conservative approach to compute ambiguity attitudes. Namely, 
we classify as ambiguity-averse or seeking only subjects whose behavior is not compatible with 
ambiguity-neutrality; thus, subjects who switch in two adjacent lines in Q1 and Q4 are clas-
sified as ambiguity-neutral.15 This implies that we may be overestimating ambiguity-neutral 
individuals. (As will be clear below, our main conclusions would not change with different clas-
sifications.)

3.3. Results

91 volunteer undergraduate students participated in 4 sessions of approximately 30 minutes 
at the PeXL laboratory at Princeton University in February 2019. Average earnings were $35.2. 
We eliminated from our analysis 2 subjects who reported strictly dominated answers in multiple 
questions. Including them does not change any of our conclusions (see Appendix C.2). Recall 
that we used two different orders. While this had some effect, the patterns we describe hold 
throughout only with minor differences (Appendix C.1).

The distribution of ambiguity-averse, neutral, and seeking is 35 (39.3%), 37 (41.6%), and 
17 (19.1%).16 Median ambiguity premia are relatively large for both averse ($2.5) and seeking 
subjects (−$2). (Table 4 in Appendix C.1 contains all details.)

3.3.1. Risky payoff-state
We begin with the case in which payments depend on a draw from a risky urn. Results appear 

on the left of Table 2 and in Fig. 1. There, the top panel includes a scatter plot of the Information 
Premium and the Ambiguity Premium. Colors represent ambiguity attitude: red for averse, blue 
for neutral, green for seeking.17 On the right is a stacked bar plot depicting the proportions of 
values that are >0, <0 and =0. The bottom panel repeats this for the Value of Information.

Considering all subjects, the mean Information Premium P is positive, but the median is 
zero. The mean Value of Information V is slightly negative, while the median is compatible with 

13 For example, if the individual chose the bet against $10 but the next grid point, say $10.2, against the bet, we set the 
certainty equivalent at $10.1.
14 For example, suppose in Q1 the switch is between $10 and $10.2; in Q2, it is one line below, between $10.2 and 
$10.5. With our procedure, values are 10.1 for Q1 and 10.35 for Q2, indicating a positive difference. But this behavior is 
also compatible with an individual who has zero difference: the true certainty equivalent may be $10.2 in both questions, 
but the individual may break indifference in different ways. This behavior is thus marked >0 but also ≈0.
15 Like above, individuals may have the same certainty equivalent but break the indifference in opposite ways.
16 The fraction of ambiguity-averse is lower than general population results (Chapman et al., forthcoming), but in line 
with selective universities. Recall that our procedure may overestimate ambiguity-neutral individuals.
17 For the color version of the figure, the reader is referred to the web version of this article.
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Table 2
Results.

Risky payoff state Ambiguous payoff state

ambiguity attitude All averse neutral seeking All averse neutral seeking

Information Premium P

theory prediction < 0 = 0 > 0 - 0 -

median 0 0 0 1 0 0 0 −1
mean 0.46 −0.56 0.6 2.2 0.13 0.57 0.08 −0.68
≈ 0 65% 69% 78% 29% 58% 54% 76% 29%
= 0 56% 57% 68% 29% 52% 49% 70% 18%
> 0 28% 11% 30% 59% 24% 34% 14% 24%
< 0 16% 31% 3% 12% 25% 17% 16% 59%

Value of Information V

theory prediction < 0 = 0 > 0 - 0 -

median −0.05 −0.05 −0.05 0.05 −0.05 −0.05 −0.05 −0.05
mean −0.41 −0.23 −0.73 −0.09 −0.43 −0.11 −0.64 −0.61
= 0 54% 51% 51% 65% 57% 57% 60% 53%
> 0 10% 11% 5% 18% 10% 14% 5% 12%
< 0 36% 37% 43% 18% 33% 29% 35% 35%

# of obs. 89 35 37 17 89 35 37 17

† Due to rounding, the percentages for > 0, < 0, = 0 need not always add up to 100%.

zero. To test the theoretical predictions, however, we have to separate our analysis by ambiguity 
attitude.

Ambiguity-averse subjects For ambiguity-averse subjects, the median Information Premium is 
zero. The majority (57%) has a value of exactly zero, while 69% have values compatible with 
zero (denoted ≈ 0). Only 31% have negative values.

A coherent picture emerges with the Value of Information: it is zero for most ambiguity-
averse subjects. (Recall that −0.05 is compatible with indifference with zero.) Of the minority 
with non-zero values, the larger group (37%) has negative values.

We can also test the relation between the degree of ambiguity-aversion and the reaction to in-
formation: Are subjects with higher ambiguity premium more likely to have negative, or smaller, 
information premium? In particular, if the perception of ambiguity about the informational am-
biguity is similar to that about the ambiguity in the payoff-relevant state, then FB and ML predict 
that the higher the subject’s ambiguity premium, the higher her reaction to information.

The plots in Fig. 1 suggest that, aside from the outliers in the bottom right, for ambiguity-
averse subjects there is no relation between ambiguity and information premia. This is confirmed 
by statistical analysis. First, for ambiguity-averse subjects, the likelihood of having a non-zero 
Information Premium is not related to the Ambiguity Premium (Probit, z= 0.69, p= 0.491). 
Second, we can test if Information Premium and Ambiguity Premium are negatively related for 
ambiguity-averse subjects. Note that, all else equal, our design is potentially biased to generate 
this (negative) correlation spuriously. Because both variables are constructed using the answer to 
Q1—the certainty equivalent of the bet on a risky urn without information—noise in this measure 
would generate a negative spurious relation. (See Section 3.5 for more.)

Despite this fact, in our data, Information Premium and Ambiguity Premium are not robustly 
related. While an OLS regression does give a relation (t=−3.65, p=0.001), this is driven by the 
D. Shishkin and P. Ortoleva Journal of Economic Theory 208 (2023) 105610
11



D. Shishkin and P. Ortoleva Journal of Economic Theory 208 (2023) 105610

Fig. 1. Results, risky payoff-relevant state, graphically.
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two outliers in the bottom right.18 Eliminating the outliers eliminates the relation (t=−0.99, p=
0.331). A Quantile regression with all subjects finds no relation (t=0.00, p=1).

Moreover, there is also no relation between the Value of Information and the Ambiguity Pre-
mium (t=0.91, p=0.369).

Ambiguity-seeking subjects Patterns are different for ambiguity-seeking subjects: 59% have 
positive Information Premium. Both median and mean are also remarkably high. That is, 
ambiguity-seeking subjects substantially increase their valuation after ambiguous information.

The Value of Information, however, remains zero for the majority. This suggests that they do 
not expect to react positively to messages; however, the actually do once confronted with them. 
While our design does not offer a conclusive explanation for this finding, there exist several 
plausible reasons for it. For instance, planning how one reacts to information arguably requires 
more sophistication than simply reacting to it, which could drive the observed discrepancy be-
tween V and P . Furthermore, various manifestations of dynamic inconsistencies are commonly 
observed in experimental data in the context of ambiguity. Recall, however, that our procedure 
may overestimate how many subjects give zero value to information (Section 3.2).

Fig. 1 also suggests a relation between Ambiguity Premium and Information Premium for 
ambiguity-seeking subjects. Regressing the two, we find a significant, positive relationship (t=
−3.91, p =0.001). Note, however, that this relation could be spuriously strengthened by our 
design, as discussed above. There is no relation with the Value of Information (t =−1.09, p=
0.292).

Ambiguity-neutral subjects Ambiguity-neutral subjects exhibit a large majority of zero values 
(non-zeros tend to positive and small). About half have zero Value of Information. Interestingly, 
43% give strictly negative values, hinting at a non-instrumental role of information.

3.3.2. Ambiguous payoff-state
Results for ambiguous payoff-states appear on the right part of Table 2 and in Fig. 2. Clear, 

but different, patterns emerge.
Considering all subjects, the median Information Premium is again zero, but the mean is 

slightly positive. The majority still reports zero. Similar results hold for the Value of Information, 
albeit with a small, negative mean.

Ambiguity-averse subjects have again a median Information Premium close to zero; a sizable 
fraction has Value of Information either zero or compatible with it. But these are smaller fractions 
than above, and 34% have strictly positive Information Premium.

The opposite pattern holds for ambiguity-seeking subjects: now the majority (59%) has neg-
ative Information Premium. The Value of Information, however, remains predominantly zero in 
both cases. Ambiguity-neutral subjects, unsurprisingly, exhibit patterns similar to those found 
with risky urns.

Overall, we have a positive relationship between the Information Premium and the Ambi-
guity Premium (t = 2.73, p = 0.008), but this does not hold separately for ambiguity-averse 
(t = 0.95, p = 0.349) or seeking (t = 1.80, p = 0.091) subjects. There is also no relation with 
the Value of Information (t=0.97 overall; t=1.44 for averse; t=−1.15 for seeking).

18 This is due to their extreme response in Q1, where both give 18.5 as the certainty-equivalent of a 50/50 bet $20/$0, 
giving large values for both measures and generating the relation.
D. Shishkin and P. Ortoleva Journal of Economic Theory 208 (2023) 105610
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Fig. 2. Results, ambiguous payoff-relevant state, graphically.
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3.4. Comparison with theory

Common theoretical models predict that, with risky state, ambiguity-averse individuals should 
have negative Information Premium and Value of Information. Instead, we find that the majority 
has zero for both. Only a minority (31%) has a negative Information Premium. For ambiguity-
seeking subjects, a large majority has a positive Information Premium, as predicted by the 
models. However, this is not reflected in the Value of Information. While theories predict it 
should be positive, it is too often zero.

3.5. Concerns

Noise in Q1 As mentioned above, the answer to Q1 is used to compute both the Ambiguity and 
the Information Premia. Noise in this measure has two effects.

First, it may induce a spurious correlation. We have seen that, for ambiguity-averse subjects, 
we do not have such a correlation and thus do not have this concern. For ambiguity-seeking, 
however, we do—and this concerns suggest caution in interpreting it.

Second, it may lead to a misclassification of subjects’ ambiguity attitude. Suppose cobserved
∅

=
ctrue
∅

+ ε. If the realization of ε is negative, this biases P upwards and increases ambiguity seek-
ing. We may be misclassifying some individuals as ambiguity-seeking and overestimating their 
P . Again, this suggests caution in interpreting positive values of P for them.

If the realization of ε is positive, this leads to underestimation of the Information Premium and 
overestimation of the Ambiguity Premium. But this is not our concern—compared to the theory, 
we find values of P that are too high for ambiguity-averse individuals. Therefore, while noise in 
elicitation may induce errors, it cannot lead to our main result that the Information Premium is 
not negative for ambiguity-averse individuals—it instead pushes in the opposite direction.

In general, even accounting for noise in all measures and in how subjects are classified, the 
main theoretical prediction remains that Information Premia P should be negative for a sizable 
fraction of the population—ambiguity-averse subjects, typically the majority. However, this is 
not what we find.

Other forms of noise Noise in the answers to other questions, if independent and with zero 
mean, would wash away and not bias our results. In fact, compared to theory, we find values with 
and without information to be too often identical—pointing to consistency, rather than noise.

Complexity Questions with information are more complex, which may add a confound, espe-
cially since reactions to complexity are known to relate to ambiguity attitude (Halevy, 2007; 
Dean and Ortoleva, 2019). But following this literature, complexity should lower the Informa-
tion Premium for ambiguity-averse individuals. Our finding, instead, is that it is too high and 
thus does not seem to be caused by the confound.

3.6. Discussion

We study ambiguity of information of one particular form: whether the message is truthful or 
misleading. While only a special case of ambiguous information, it allows us to test an implica-
tion of the dilation property of updating models. Common models predict that ambiguity-averse 
individuals should lower their value of bets after information. That is, for any message, ‘all news 
15
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is bad news.’ We then test it and reject it: we find that the large majority of ambiguity-averse 
individuals do not react to this information.

We now turn to discuss possible explanations, including alternative models.

Choosing if to process information and DC updating Recall that, in our experiments, mes-
sages do not seem to be generally ignored. First, during the experiment, subjects were required 
to acknowledge them (clicking on the corresponding color). Second, many subjects did re-
act to information in the sense that their P is non-zero. In particular, this is true for most 
ambiguity-seeking subjects with risky payoff-relevant urns, as well as many ambiguity-averse 
ones with ambiguous payoff-relevant urns. Overall, it is plausible that messages are ignored 
when harmful—by ambiguity-averse subjects with risky payoff-relevant states—and not ignored 
when beneficial—by ambiguity-seeking ones. In particular, 63% and 54% of ambiguity-averse 
subjects, respectively, chose to bet on the color from the message in Q2 and Q5, respectively.19

A natural interpretation is that individuals choose strategically when and if to process the 
information before applying any updating. They may simply ignore it; when they don’t, they may 
apply a rule like FB or ML. Note that ignoring information is never useful in the Expected-Utility 
framework, wherein information has weakly positive value. But this is no longer the case under 
ambiguity. It may thus be reasonable for subjects to disregard information when harmful—when 
‘all news is bad news.’ Crucially, this approach is outside the FB or ML models. Furthermore, 
accounting for it may change the implications in applications.

To our knowledge, the only updating rule with similar implications is Dynamically Consistent 
updating (DC; Hanany and Klibanoff, 2007, 2009). Under DC, before information, agents make 
choices contingent on each message to maximize the ex-ante overall utility; the updating is such 
that they then want to implement them after information. Applying it to our experiment with 
risky state, ambiguity-averse agents do not react to information, while ambiguity-seeking ones 
do. These are their ex-ante optimal choices because the former wants to reduce exposure to 
ambiguity, while the latter wants to increase it. Such behavior is in line with our findings.

However, DC violates consequentialism: updated beliefs may be influenced by unrealized 
parts of the decision problem. This may be considered unappealing.20

Proxy updating Alternatively, subjects may be following Proxy updating, introduced in Gul and 
Pesendorfer (2021), precisely with the goal of avoiding the case of dilation after every message; 
indeed, the motivation includes examples reminiscent of our experiment. Unfortunately, their 
updating rule cannot be applied to our case because it is defined in the Choquet Expected Utility 
framework only for capacities satisfying total monotonicity (which is violated in our risky payoff-
state case, see Appendix A). However, our results are aligned with the main idea underlying this 
approach.

Contraction updating Another possibility is that subjects update beliefs via Contraction Up-
dating (Tang, 2022). Under this rule, an MMEU decision-maker’s ambiguity may or may not be 

19 At the same time, 44% and 50% of ambiguity-seeking agents chose to bet on the color from the message in Q2 and 
Q5, respectively. Note, however, that any choice of color is compatible with leading models—ambiguity-seeking agents 
with symmetric sets of beliefs would be indifferent.
20 FB and ML satisfy consequentialism but violate dynamic consistency. The two properties generally conflict under 
ambiguity (Siniscalchi, 2009). Dominiak et al. (2012) and Bleichrodt et al. (2021) test both and find more support for 
consequentialism.
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resolved, depending on the degree of ambiguity of the realized event. However, ambiguous in-
formation may never increase ambiguity about a payoff-relevant state. Thus, in our setting, there 
would never be dilation, and the possibility of ‘all news is bad news’ would be ruled out. Hence, 
this is compatible with our main finding that valuations are unchanged after information. See 
Tang (2022) for more discussion.

Attitude towards ambiguity in information vs. in payoffs As we discussed above, our interpre-
tation relies on the assumption that the attitude towards ambiguity is the same for states that 
determine payoffs and information.21 This is further supported by the use, in the experiment, of 
the same description for ambiguous payoff-jars and ambiguous information-bags. At the same 
time, our findings are compatible with the possibility that subjects are payoff-ambiguity averse 
or seeking, but information-ambiguity neutral.

Implications Our results are incompatible with the dilation property implied by widespread 
models of updating under ambiguity. Some may view this as unsurprising—especially those who 
deemed this property unappealing in the first place. Others may note that parsimonious models 
are necessarily inaccurate, and the issue then becomes the importance of these violations.

Our experiment studies a stark, extreme case that may be unlikely to occur in natural settings. 
However, it provides the opportunity to directly test a property that has relevant and direct im-
plications in applications, especially in strategic settings. Our results suggest some caution in 
adopting widespread models of updating under ambiguity, which may be less appealing when 
information is ambiguous, and towards a consideration of a broader class of models that better 
account for this case.

Data availability

The data and code are available at http://doi .org /10 .5281 /zenodo .7596220.

Appendix A. On proxy updating

Gul and Pesendorfer (2021) introduce the Proxy updating rule with the goal of addressing the 
possibility of ‘all news is bad news.’ However, this is currently defined only for totally monotone 
capacities; unfortunately, we cannot express our preferences this way, at least when the state 
space is risky. To see why, consider the framework introduction in Section 2 for the case in 
which the payoff-relevant state is risky. Our assumptions for this case are that we have a set of 
beliefs � ⊆ �(� × M) such that for each π ∈ �:

π(R) = π(B) = 0.5, π(r|R) = π(b|B), π(b|R) = π(r|B).

Any set of beliefs with these characteristics does not induce a totally monotone capacity. Note 
that the conditions above imply π(R, r) = π(B, b) and π(B, r) = π(R, b). Note also that 
π(R) = π(R, r) + π(R, b) = π(R, r) + π(B, r) = π(r) = 0.5. Similarly we obtain π(b) = 0.5. 
Let ρ denote the capacity induced by �. We know

ρ(R) + ρ(B) = ρ(r) + ρ(b) = 1.

21 More precisely, we assume that, if they are ambiguity averse (loving) for states that determine payoffs, they are so 
also for states that determine the information, although the degrees of this aversion (loving) may vary.
17

http://doi.org/10.5281/zenodo.7596220


D. Shishkin and P. Ortoleva Journal of Economic Theory 208 (2023) 105610
Suppose that ρ is totally monotone. Then its Möbius transform λ must satisfy

λ(R, r) + λ(R,b) + λ(B, r) + λ(B,b) + λ(R) + λ(B) = 1 (1)

λ(R, r) + λ(R,b) + λ(B, r) + λ(B,b) + λ(r) + λ(b) = 1. (2)

However, (1) implies that λ(r) + λ(b) = 0. Combining with (2), it implies

λ(R, r) + λ(R,b) + λ(B, r) + λ(B,b) = 1,

i.e., there is no ambiguity, and this only happens when |�| = 1, contradiction.

Appendix B. Examples and proofs

As a preliminary result, we prove a useful lemma that shows that if the sign of the Information 
Premium is the same for all messages, the Value of Information must have the same sign.

Lemma 1. Consider an agent whose preferences follow either MMEU or the Smooth Model. 
Then, if both Pr and Pb are positive (negative, zero, respectively), then V is positive (negative, 
zero, respectively).

Proof. First, note that since u is continuous and strictly increasing, cm is continuous and strictly 
increasing in the first argument.

Second, fix any x, y ∈ R and suppose cm(x, y) − c∅(x, y) = Pm > 0 for each m ∈ {r, b}. For 
each m ∈ M , the map hm : V �→ u(cm(x−V, y)) −u(c∅(x, y)) is continuous, strictly decreasing, 
positive at 0 and negative at y. Call a function nice if it satisfies these properties.

Now note that for any π ∈ �(M), hπ := π(r)hr + π(b)hb is also nice. For any φ : R → R, 
strictly increasing and continuous, define Fφ(t) := φ(t + u(c∅(x, y))) − φ(u(c∅(x, y))). Since 
Fφ is continuous, strictly increasing, and sign-preserving (i.e., Fφ(0) = 0), then Fφ ◦ hπ is also 
nice. It follows that hmin := minπ∈�M hπ , hmax := maxπ∈�M hπ , and hφ,μ := ∫

Fφ ◦ hπ dμ are 
also nice. Since this implies that they are strictly decreasing, positive at 0, and negative at y, it 
follows that each of these functions must have a unique root which is positive.

Finally, note that V is defined as the root of one of these functions, depending on the model 
and on the ambiguity attitude. This concludes the proof for the case of Pm > 0 for each m.

The case of Pm = 0 is trivial and the case of Pm < 0 is the equivalent, except that all relevant 
functions are negative at 0 instead of positive. ‖

B.1. Examples of dilation and contraction with ambiguous states

Below are examples in which the set of beliefs can contract, dilate, and remain unchanged 
with ambiguous information when the payoff-relevant state is ambiguous.

Example 1 (Contraction). Fix any a ∈ (0, 0.5), and let � = co(π1, π2), where

π�
1 (R) = a, π1(r|R) = π1(b|B) = 1 − a,

π�
2 (R) = 1 − a, π2(r|R) = π2(b|B) = a.

Here the shape of � induces a ‘negative correlation:’ for each π ∈ �, the Bayesian posterior on R
after message r is 0.5. There is no more ambiguity. Thus, with both FB and ML, ��

r = {0.5} ⊂
[a, 1 − a] = ��. It follows that ambiguity-averse agents have Pr > 0 and ambiguity-seeking 
Pr < 0.
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Example 2 (Dilation). Fix any ε ∈ (0, 0.5), let � = co(π00, π01, π10, π11), where

π�
00(R) = ε, π00(r|R) = π00(b|B) = ε,

π�
01(R) = ε, π01(r|R) = π01(b|B) = 1 − ε,

π�
10(R) = 1 − ε, π10(r|R) = π10(b|B) = ε,

π�
11(R) = 1 − ε, π11(r|R) = π11(b|B) = 1 − ε.

Intuitively, � includes all combinations of marginals over � and over whether the message is 
informative or misleading, as if obtained as the ‘product’ of the two sets. In this case, we have

FB��
m =ML��

r =
[

ε2

ε2 + (1 − ε)2 ,
(1 − ε)2

ε2 + (1 − ε)2

]
� [ε,1 − ε] = ��.

Thus, under FB and ML, Pm < 0 and V < 0 if the agent is ambiguity-averse; Pm > 0 and V > 0
if ambiguity-seeking.

Example 3 (Unchanged). Let � = co(π00, π01, π10, π11) where πij are defined as in the previous 
example, but with ε = 0. Then we have

FB��
r =ML��

r = [0,1] = [0,1] = ��.

Thus, independently of the ambiguity attitude we have Pm = 0 and V = 0.

B.2. Proofs

Proof of Proposition 1. Notice first that, since u is strictly increasing and X = R, we have that 
Pr , Pb and V are both well-defined and unique.

Consider first the case of ambiguity-neutrality. Recall that we have assumed π(r|R) =
π(b|B) and π(b|R) = π(r|B) and that, if π̄ is the belief for which messages are not 
informative—π̄(r|R) = π̄ (b|R) = 0.5—we have π̄ ∈ �. When � = {π}, we must then have 
π(R, r) = π(R, b) = π(B, b) = π(B, r) = 0.25. In turns, this implies that the decision-maker’s 
belief over R and B will not change after receiving message r or b. Item (3) of the Proposition 
thus holds.

Consider now a set of beliefs � with |�| > 1. Because π(R) = 0.5 for all π ∈ �, then there 
must exist π1, π2 ∈ � such that π1 �= π2 and π1(R, r) +π1(B, b) �= π2(R, r) +π2(B, b). Denote 
p̄ := maxπ∈� π(R, r) + π(B, b) and p := minπ∈� π(R, r) + π(B, b). Our assumptions on �
imply p̄ > 0.5 > p.

Assume now the agent is ambiguity-averse and that the updating rule is FB. After mes-
sage r , the Bayesian update of π ∈ � is π(R|r) = 2π(R, r) = π(R, r) + π(B, b). Thus, 
minπ∈� π(R|r) = p < 0.5 and minπ∈� π(B|r) = 1 − p̄ < 0.5. No matter what color the agent 
chooses, she is worse off compared to before the message. Then: Pm < 0 for each m; by 
Lemma 1, V < 0. The case of message b is identical. The case of ambiguity-seeking follows 
identical steps, minimally adapted.

Finally, assume that the agent’s updating is ML. Note that under any belief π , π(r) = π(b) =
0.5. Therefore, ML updating is exactly the same as the ML updating, and the result maintains. ‖

Proof of Proposition 2. The case for ambiguity-neutrality is the same as Proposition 1.
If � > 1, by Example 1 in the main body, Pm can be positive for ambiguity-averse agents 

and negative for ambiguity-seeking agents when the updating is FB and ML. By Example 2 in 
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Section B.1, Pm and V can be negative for ambiguity-averse agents and positive for ambiguity-
seeking agents when the updating is FB and ML. By Example 3 in Section B.1, Pm and V can 
be zero for ambiguity-seeking and ambiguity-averse agents when the updating is FB and ML. 
We are left to show that under both FB and ML it is possible to have V > 0 for ambiguity-averse 
agents; or V < 0 for ambiguity-seeking ones.

We show both with the following example. Consider � = co(π1, π2) such that

π�
1 (R) = ε, π1(r|R) = π1(b|B) = 1 − δ,

π�
2 (B) = ε, π2(b|R) = π2(r|B) = 1 − δ,

where ε, δ < 0.5. It is easy to check that in this case, ML and FB coincide. When the agent 
is ambiguity-averse, Pr = 0.5 − ε and Pb = εδ

εδ+(1−ε)(1−δ)
− ε. Thus, that V = 0.5δ − 0.5ε. 

Therefore, V > 0 if ε < δ. When the agent is ambiguity-seeking, Pr = ε − 0.5 and Pb = ε −
εδ

εδ+(1−ε)(1−δ)
. Thus V < 0 if ε < δ. ‖

Proof of Proposition 3. Without loss of generality, assume that u(x +y) = 1, u(x) = 0. For any 
π ∈ suppμ and any m ∈ {r, b}, note that

π(m) = π(m|R)π(R) + π(m|B)π(B) = 1

2
(3)

This implies that μ(m|�) = 1
2 and, therefore, μ(�|m) = μ(�). It follows that for all m ∈ {r, b}

μ(·|m) = μ. (4)

Without information, we have

u(c∅) = max
ω∈{R,B}U(x + y1ω),

where ∀ω ∈ {R, B}

U(x1ω) =
∫

�(S)

φ

⎡
⎣∫

S

u ◦ (x + y1ω)dπ

⎤
⎦ dμ

=
∫

�(S)

φ [π(ω)u(x + y) + (1 − π(ω))u(x)] dμ

= φ
( 1

2

)
Similarly, when message m is observed, the utility is

u(cm) = max
ω∈{R,B}U(x + y1ω|m).

By (4), for all ω ∈ {R, B},

U(x + y1ω|m) =
∫

�(S)

φ

⎡
⎣∫

S

u ◦ (x + y1ω)dπ(·|m)

⎤
⎦ dμ(·|m)

=
∫

�(S)

φ [π(ω|m)] dμ.
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Now we show that the symmetry of μ implies that∫
�(S)

π(ω|m)dμ = 1

2
. (5)

To see why, denote

�+ = {π ∈ �(S)|π(m|ω) > 1
2 },

�0 = {π ∈ �(S)|π(m|ω) = 1
2 },

�− = {π ∈ �(S)|π(m|ω) < 1
2 },

and note that symmetry implies

μ(�+) = μ(�−) = 1
2 − 1

2μ(�0), μ ◦ G−1
ω = μ ◦ (1 − Gω)−1,

where Gω : π �→ π(·|ω). Therefore, (5) holds because∫
�(S)

π(ω|m)dμ =
∫

�(S)

1
2π(m|ω)

1
2π(m|R) + 1

2π(m|B)
dμ

=
∫

�(S)

π(m|ω)dμ

=
∫

�+

π(m|ω)dμ +
∫

�−

π(m|ω)dμ +
∫
�0

π(m|ω)dμ

=
∫

�+

π(m|ω)dμ +
∫

�+

(1 − π(m|ω))dμ + 1

2
μ(�0)

= μ(�+) + 1

2
μ(�0) = 1

2
.

In the case of ambiguity-averse agent (φ strictly concave), by Jensen’s inequality,

U(x + y1ω|m) =
∫

�(S)

φ [π(ω|m)] dμ < φ

⎡
⎢⎣ ∫
�(S)

π(ω|m)dμ

⎤
⎥⎦ = φ

[ 1
2

] = u(c∅).

To sum up, we have ∀m ∈ {r, b}, ω ∈ {R, B}, U(x + y1ω|m) < u(c∅), which implies cm < c∅
and, therefore, Pm < 0, V < 0.

The case of affine φ is straightforward and the case of strictly convex φ is analogous to the 
one above. ‖

Appendix C. Additional experimental analysis

C.1. Additional tables

Table 3 summarizes ambiguity attitude in the sample; Table 4 summarizes ambiguity premia 
in the sample; Table 5 is similar to Table 2, but with statistics grouped by order.
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Table 3
Ambiguity attitude in the sample.

averse neutral seeking Total

A 23 22 7 52
B 12 15 10 37
Total 35 37 17 89

Table 4
Ambiguity premia in the sample.

amb. att. averse neutral seeking

order A B All A B All A B All

median 2.8 2 2.5 0 0 0 −4 −1.5 −2
mean 3.3 2.8 3.1 −0.05 −0.02 −0.03 −3.9 −1.8 −2.7

# of obs. 23 12 35 22 15 37 7 10 17

C.2. Analysis with all subjects

The analysis in the main body of the paper does not include the behavior of two subjects who 
reported extreme answers in a number of questions—-in particular, they chose a bet on the urn 
with a payment of $20 against any amount of money, including $20 for sure. Below we replicate 
Table 3 and Table 2, but include these two subjects. As can be seen from Table 6, both subjects 
faced Order B, one of them was ambiguity-seeking, another – ambiguity-neutral. Thus, there is 

very little difference between Tables 2 and 7. 
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Ambiguous payoff state

averse neutral seeking

A B A B A B

- - = 0 = 0 - -

0 0.25 0 0 0 −1.1
0.25 1.2 −0.23 0.53 −1.3 −0.21
61% 42% 86%∗ 60% 29% 30%
52% 42% 82%∗ 53% 14% 20%
26% 50% 4%∗ 27% 43% 10%
22% 8% 14% 20% 43% 70%

- - = 0 = 0 - -

−0.05 −0.05 −0.05 −0.55 0.05 −0.05
−0.19 0.04 −0.46 −0.9 −0.01 −1
52% 67% 73%∗∗ 40% 43% 60%
17% 8% 4% 7% 14% 10%
30% 25% 23%∗ 53% 43% 30%

23 12 22 15 7 10

0.05.

23
Table 5
Results (by order).

Risky payoff state

amb. attitude All averse neutral seeking All

order A B A B A B A B A B

Information Premium P

theory prediction < 0 < 0 = 0 = 0 > 0 > 0

median 0 0 0 0 0 0 3.5 0 0 0
mean 0.57 0.29 −0.76 −0.17 0.5 0.75 5.2 0.16 −0.17 0.54
≈ 0 62% 70% 61% 83% 77% 80% 14% 40% 67%∗∗ 46%
= 0 50% 65% 52% 67% 59% 80% 14% 40% 60%∗ 40%
> 0 31% 24% 9% 17% 36% 20% 86%∗ 40% 19% 30%
< 0 19% 11% 39% 17% 4% 0% 0% 20% 21% 30%

Value of Information V

theory prediction < 0 < 0 = 0 = 0 > 0 > 0

median −0.05 −0.05 −0.05 −0.05 −0.05 −0.55 0.05 0 −0.05 −0.05
mean −0.34 −0.52 −0.44 0.17 −0.48 −1.1 0.46 −0.48 −0.28 −0.63
= 0 58% 49% 56% 42% 59% 40% 57% 70% 60% 54%
> 0 8% 14% 4%∗ 25% 4% 7% 29% 10% 12% 8%
< 0 35% 38% 39% 33% 36% 53% 14% 20% 29% 38%

# of obs. 52 37 23 12 22 15 7 10 52 37

† Due to rounding, the percentages for > 0, < 0, = 0 need not always add up to 100%.
Stars in A-columns indicate (two-sided) statistically significant difference from values in B-columns: ∗p < 0.1, ∗∗p <
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Table 6
Ambiguity attitude in the sample (all observa-
tions).

averse neutral seeking Total

A 23 22 7 52
B 12 16 11 39
Total 35 38 18 91

Table 7
Results (all observations).

Risky payoff state Ambiguous payoff state

ambiguity attitude All averse neutral seeking All averse neutral seeking

Information Premium P

theory prediction < 0 = 0 > 0 - 0 -

median 0 0 0 0.88 0 0 0 −0.62
mean 0.42 −0.56 0.59 2 0.11 0.57 0.04 −0.64
≈ 0 65% 69% 79% 28% 59% 54% 76% 33%
= 0 56% 57% 68% 28% 52% 49% 68% 22%
> 0 28% 11% 29% 56% 23% 34% 13% 22%
< 0 16% 31% 3% 17% 25% 17% 18% 56%

Value of Information V

theory prediction < 0 = 0 > 0 - 0 -

median −0.05 −0.05 −0.05 0.05 −0.05 −0.05 −0.05 −0.05
mean −0.41 −0.23 −0.71 −0.09 −0.42 −0.11 −0.63 −0.57
= 0 55% 51% 53% 67% 58% 57% 60% 56%
> 0 10% 11% 5% 17% 10% 14% 5% 11%
< 0 35% 37% 42% 17% 32% 29% 34% 33%

# of obs. 91 35 38 18 91 35 38 18

† Due to rounding, the percentages for > 0, < 0, = 0 need not always add up to 100%.

Appendix D. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /
j .jet .2023 .105610. 
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